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Toward cloud-native 
architectures
Josep Torrellas and  
Jovan Stojkovic Cloud computing is undergoing a paradigm shift. 

Large monolithic applications are being replaced 
by compositions of many lightweight, loosely-
coupled microservices (Richardson, 2023). Each 
microservice is built and deployed as a separate 
program that executes part of the application’s 
functionality, such as key-value serving, protocol 
routing or ad serving. Figure 1 shows an example 
of a microservice-based application.
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This approach simplifies application 
development, as it enables the 
composition of heterogeneous modules 
of different programming languages and 
frameworks. Moreover, each microservice 
can be shared among multiple applications 
while being scaled independently.

As a result, this paradigm is supported 
by major IT companies such as Amazon, 
Netflix, Alibaba, Twitter, Uber, Facebook 
and Google. In addition, there are many 
open-source systems that manage 
microservices, such as Kubernetes and 
Docker Compose.

Building on the microservices model, 
the next evolution of cloud computing is 
serverless or function-as-a-service (FaaS) 
(Amazon Web Services, 2025). It retains 
the modular structure of microservices 
and simplifies their deployment and 
management. Specifically, applications 
are composed of a set of functions. 
Developers do not provision or manage 
the infrastructure for each function. 
They simply upload the functions, and 
the cloud provider handles the runtime 
environment, system services and scaling. 
Each function runs in an ephemeral, 
stateless container or micro virtual 
machine that is created and scheduled on 
demand in an event-driven manner. In this 
environment, applications can achieve 
high resource utilisation, scale seamlessly 
and benefit from fine-grained billing. 
Today, serverless computing is offered 
by all major cloud providers and is widely 
used in domains such as e-commerce, 
image and video processing, and machine 
learning inference and training.

The combination of microservice and 
serverless environments is often called 
‘cloud-native’. This article examines what 
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Figure 1: Microservice-based application, where blue boxes represent microservices. Green and orange boxes 
represent frontend and backend helper applications.

Figure 2: Inefficient function patterns: (a) synchronous I/O within a function, and (b) functions calling functions.

makes cloud-native environments hard 
to support and the techniques that the 
ACE Center for Evolvable Computing 
(ACE, 2025) has designed to execute 
them efficiently.

What makes these 
workloads hard to support?

Cloud-native workloads are hard 
to support efficiently in distributed 
systems with conventional servers 
and conventional software stacks. The 
reason is that they differ from traditional 
monolithic applications. Indeed, the 
typical execution time of a service 
(i.e. a microservice or a FaaS function) 
is of the order of only a millisecond. 
Further, the CPU core is often stalled, 
waiting for responses to I/O operations 
to global storage or for the return of a 
callee service running on another node. 
This is shown in Figure 2. During the 
stall time, the CPU core may choose to 
context switch, in which case, the cache 
is polluted by other services.

Other important characteristics of these 
workloads are that services often exhibit 
bursty invocation patterns and that 
they have stringent tail-latency bounds, 
requiring most of the requests (e.g. 99%) 
to complete within a strict deadline. 
These characteristics have important 
implications, as we will see.

Rethinking the CPU 
hardware

Current CPUs are not a good match for 
cloud-native environments, as shown in 
Table 1.

First, conventional processors have 
powerful cores, with extensive hardware 
for instruction level parallelism (ILP) and 
large caches; cloud-native environments 
execute many small-sized services that 
have frequent branches, I/O invocations, 
and other system calls that inhibit 
ILP. Further, conventional multicores 
invest significant hardware and design 
complexity to support global hardware 
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cache coherence; services hardly share 
writable data through memory. In addition, 
conventional processors incorporate 
microarchitectural mechanisms for long-
running, predictable applications, such 
as advanced prefetchers and branch 
predictors; cloud-native environments 
execute short-running services, 

and frequently interrupt them with 
context switches. Finally, while current 
processors are optimised to minimise 
the average latency of programs, the 
key performance target in cloud-native 
environments is minimising tail latency of 
service requests (e.g. improving the 99th-
percentile responses).

Table 1: Mismatch between current processors and cloud-native environments.

Current processors Cloud-native environments

Powerful cores and large caches Small-sized services; low ILP

Global hardware cache coherence No writable data sharing

Optimised for long-running, predictable 
applications

Short-running services; frequent context 
switching

Maximise average performance Strict tail latency requirements

This new environment calls for a 
new processor design that we call 
µManycore (Stojkovic et al., 2023a). 
A µManycore has many simple cores 
rather than a few large cores. It does 
not support global hardware cache 
coherence. Instead, it has multiple small 
hardware cache-coherent domains of 
4–16 cores called villages. In a village, 
services can communicate using shared 
memory, while across villages they use 
network messages. Groups of villages 
form a cluster (Figure 3a), and multiple 
clusters form the processor. Most 
importantly, the µManycore design is 
comprehensively optimised for tail-
latency reduction. This means that, 
in addition to targeting inefficiencies 
affecting all service requests, the design 
allocates special hardware to smooth 

out contention-based overheads that 
may affect a subset of requests.

Table 2 shows the main sources of tail 
latency and how µManycore handles 
them. µManycore includes hardware 
supported enqueuing, dequeuing and 
scheduling of service requests, as 
well as context switching. In addition, 
since contention in the on-package 
network is a major source of tail latency, 
µManycore interconnects its clusters 
in a hierarchical leaf-spine network 
topology (Figure 3b). Such a network has 
many redundant, low-hop-count paths 
between any two source and destination 
clusters. Hence, multiple messages can 
proceed in parallel from the same source 
to the same destination cluster without 
delaying one another.

Table 2: Main sources of tail latency in a cloud-native CPU.

Source Reason µManycore solution

Request scheduling Synchronisation and queuing  
of requests

Request enqueuing, 
dequeuing and scheduling  
in hardware

Context switching OS invocation and state saving 
and restoring

Hardware-based context 
switching

On-package network Network link/router contention On-package hierarchical  
leaf-spine network

Harvesting hardware

In cloud-native environments, users 
allocate a virtual machine (VM) or a 
container (i.e. an instance) with a specified 
number of cores and amount of memory 
to serve invocations (i.e. requests) for a 
given service. However, the requests for 
a service exhibit bursty patterns. Hence, 
to attain good performance at all times, 
users typically provision instances for 
peak loads. As a result, cloud-native 
environments exhibit low core utilisation 
for most of the time.

To combat resource underuse in general 
workloads, Microsoft has introduced 
Harvest VMs. In a system, there are 
two types of VMs: Primary  and Harvest 
VMs. Primary VMs run latency-critical 
applications, expect high performance, 
and are created with a specified number 
of cores; Harvest VMs run batch 
applications, have loose performance 
requirements and can tolerate resource 
fluctuations. Harvest VMs dynamically 
grow by harvesting temporarily idle 
cores owned by a Primary VM. When 
the Primary VM needs its cores, it 
reclaims them back. This technique can 
substantially increase core utilisation.

Sadly, re-assigning a core from one VM to 
another is costly. The overheads include 
hypervisor calls to detach the core from 
one VM and attach it to another VM, 
an expensive cross-VM context switch, 
and the flush and invalidation of the 
re-assigned core’s private caches and 
TLBs. The latter is needed to eliminate a 
potential source of information leakage. 
We find that the sum of all these overheads 
can easily exceed 5  ms. Such overhead 
is tolerable when Primary VMs run long 
monolithic applications. However, it is not 
acceptable in cloud-native environments 
where an incoming 1-ms service request 
for a Primary VM needs to wait several ms 
to reclaim a core.

To enable core harvesting in cloud-native 
environments, we support it in hardware. 
Specifically, we augment µManycore with 
the HardHarvest extensions (Stojkovic, 
2025b), which target the two main 
overheads of conventional software-
based core harvesting. The first overhead 
is core re-assignment. To minimise it, 
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Figure 3: µManycore cluster (a) and the on-package interconnection of clusters into a µManycore processor (b).

HardHarvest organises the hardware 
request queue into per-service subqueues. 
A core is re-assigned from a Primary VM 
to a Harvesting VM by being allowed to 
dequeue requests from the new VM’s 
subqueue when the original subqueue is 
empty (Figure 4). Similarly, when a new 
request for a Primary VM arrives, a loaned 
core is interrupted and forced to dequeue 
from the original subqueue. There are no 
detach/attach system calls.

The second overhead is flushing and 
invalidating private caches and TLBs 
on core re-assignment. To reduce it, 
HardHarvest leverages the fact that 
services typically have small working 
sets. Specifically, HardHarvest partitions 
these structures into two regions: 
Harvest and non-Harvest. When a core 
executes a Primary VM, it can use both 

regions; when it executes a Harvest VM, 
it can only use the Harvest region. When 
a core transitions between VMs, only the 
Harvest region is flushed and invalidated; 
the non-Harvest region preserves the 
Primary VM’s state during the core loan.
With HardHarvest, cores attain high 
utilisation, the tail latency of Primary VM 
requests suffers minimal or no increase, 
and the throughput of  Harvest VMs 
workloads increases substantially.

Costly storage accesses

For high availability and fast scalability, 
services in a cloud-native environment 
are commonly implemented as 
stateless. This means that all the data 
of a service is discarded from a node 
once the service is unloaded from 

Figure 4: A Harvest VM temporarily steals a core owned by a Primary VM to execute job ID5.

the node; any durable data must be 
stored in global storage. This results in 
inefficient data reuse, as subsequent 
service invocations must reload their 
data from global storage. Further, for 
scalability and security reasons, any 
communication between services must 
occur through the global storage. All 
these costly accesses to global storage 
hurt the performance of services.

To mitigate this cost, data can be cached 
locally in the memory of the nodes where 
services execute.

However, distributed software caches 
add a new challenge to the cloud-native 
infrastructure: how to keep these caches 
coherent. Unfortunately, current schemes 
address this challenge in suboptimal 
ways for cloud-native environments. 
Specifically, most schemes cache a data 
item in the memory of only a single node, 
called the item’s home node. As a result, 
a service invocation running on a node 
frequently issues accesses to other nodes 
to get data items from their homes.

An exception is Faa$T (Romero et al., 
2021), which allows a data item to be 
cached in multiple nodes and uses a 
versioning software protocol to keep 
caches coherent. It associates a version 
number with each data item. Data items 
have a home node, which caches the 
latest data value and version number. 
When a non-home node reads the data 
item, it first fetches the item’s version 
number from the home, even if it caches 
the data item locally. Then, it compares 
the version number in the home with the 
locally cached version number. If the two 
numbers match, the service accesses the 
data item directly from the local cache. 
Otherwise, it fetches it from the home.

This protocol works well for relatively 
large data items, where fetching only the 
small version number is much cheaper 
than fetching the entire data item. 
However, it is suboptimal in cloud-native 
environments, where most storage 
accesses are reads to small data items. 
In this case, the time to fetch the version 
number is comparable to the time to 
fetch the data item, and most version 
comparisons are unnecessary, as writes 
are rare.
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To attain high performance in cloud-
native settings, we use a new distributed 
cache-coherence software protocol 
based on invalidations. We call it Concord 
(Stojkovic et al., 2025a). Invalidation-
based protocols, though common in 
hardware systems, have been disregarded 
in distributed software environments. The 
reasons are that coherence directories 
introduce fault-tolerance concerns and 
that invalidation messages may scale 
poorly with increasing numbers of nodes. 
However, invalidation-based protocols 
can be a good match for cloud-native 
environments. The reasons are that 
services are stateless and therefore easier 
to recover from failures, and that the low 
frequency of writes keeps invalidation 
traffic low.

In Concord, each application is assigned 
a software data cache distributed across 

the memories of the nodes where the 
application runs. To make the protocol 
more resilient to failures, Concord 
employs write-through caching. When 
a node crashes, a coordination service 
redistributes the data items homed in the 
crashed node. Overall, Concord achieves 
high performance while enhancing fault 
tolerance.

Speculative execution

Cloud-native applications are composed 
of multiple services chained together. 
Hence, rather than speeding up individual 
services, we now consider accelerating 
whole application workflows. To 
understand how we can do so, consider a 
smart home FaaS application composed 
of seven functions (Figure 5a). The Login 
function may return true or false. If the 

former, multiple functions in sequence 
read the temperature, normalise it and 
compare it to a threshold. Based on the 
comparison, the air conditioner may be 
turned on. The workflow is shown with 
condition outcomes and the data that is 
passed between functions. We can see 
that there are cross-function control and 
data dependences.

In many applications, we find that the 
outcomes of the branches that encode 
cross-function control dependences are 
fairly predictable. Further, since functions 
are typically stateless, they often produce 
the same output every time that they are 
invoked with the same input. Hence, we 
also find that the cross-function data 
dependences are predictable.

With these insights, we propose to 
accelerate cloud-native applications 

Figure 5: Execution of a smart home FaaS application.
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using software-supported speculation. 
With this approach, called SpecFaaS 
(Stojkovic et al., 2023b), the functions 
of an application are executed early, 
speculatively, before their control and 
data dependences are resolved. Control 
dependences are predicted with a 
software-based branch predictor like 
those in processors. Data dependences 
are predicted with memoization, i.e., by 
maintaining a table of past input-output 
pairs observed for the same function. 
With this support, the execution of 
downstream functions is overlapped 
with that of upstream functions, 
substantially reducing the end-to-end 
execution time of applications. Figure 
5b shows the timeline of the example 
application under conventional 
execution in the common case when 
both branches are true. Figures 
5c and d show the timelines when 
using speculative execution of only 
control and of both control and data, 
respectively.

While a function execution is 
speculative, SpecFaaS prevents its 
buffered outputs from being evicted to 
global storage. When the dependences 

are resolved, SpecFaaS proceeds to 
validate the function. If no dependence 
has been violated, the function 
commits. Otherwise, the buffered 
speculative data is discarded and the 
offending functions are squashed and 
re-executed.

Concluding remarks

The nascent cloud-native environments 
offer many opportunities for 
improvement. For example, it is 
known that cloud-native services 
suffer from the execution of auxiliary 
operations known as datacentre tax. 
They include operations such as data 
compression, data encryption, and 
transmission control protocol (TCP). 
These operations can be sped up 
with hardware accelerators. Another 
area of research is how to reduce the 
rising energy consumption and carbon 
footprint of these environments. This 
problem can be studied in the context 
of many heterogeneous accelerators 
and a mix of renewable and non-
renewable energy sources.
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