) ¢ DISSEMINATION ACE-Center

Toward cloud-native
architectures

Josep Torrellas and

J Stojkovi . . ; .
ovan o;ovnc .. Cloud computing is undergoing a paradigm shift.

Large monolithic applications are being replaced
by compositions of many lightweight, loosely-
coupled microservices (Richardson, 2023). Each
microservice is built and deployed as a separate
program that executes part of the application’s
functionality, such as key-value serving, protocol
routing or ad serving. Figure 1 shows an example

of a microservice-based application.
.

Adobe Stock © Evgeniy

www.europeandissemination.eu

DISSEMINATION
ACE-Center

»

»
-
NGINX
”
>
-
-

Figure 1: Microservice-based application, where blue boxes represent microservices. Green and orange boxes

represent frontend and backend helper applications.

This approach simplifies application
development, as it enables the
composition of heterogeneous modules
of different programming languages and
frameworks. Moreover, each microservice
can be shared among multiple applications
while being scaled independently.

As a result, this paradigm is supported
by major IT companies such as Amazon,
Netflix, Alibaba, Twitter, Uber, Facebook
and Google. In addition, there are many
open-source systems that manage
microservices, such as Kubernetes and
Docker Compose.

Building on the microservices model,
the next evolution of cloud computing is
serverless or function-as-a-service (FaaS)
(Amazon Web Services, 2025). It retains
the modular structure of microservices
and simplifies their deployment and
management. Specifically, applications
are composed of a set of functions.
Developers do not provision or manage
the infrastructure for each function.
They simply upload the functions, and
the cloud provider handles the runtime
environment, system services and scaling.
Each function runs in an ephemeral,
stateless container or micro virtual
machine that is created and scheduled on
demand in an event-driven manner. In this
environment, applications can achieve
high resource utilisation, scale seamlessly
and benefit from fine-grained billing.
Today, serverless computing is offered
by all major cloud providers and is widely
used in domains such as e-commerce,
image and video processing, and machine
learning inference and training.

The combination of microservice and
serverless environments is often called
‘cloud-native’. This article examines what

makes cloud-native environments hard
to support and the techniques that the
ACE Center for Evolvable Computing
(ACE, 2025) has designed to execute
them efficiently.

What makes these
workloads hard to support?

Cloud-native workloads are hard
to support efficiently in distributed
systems with conventional servers
and conventional software stacks. The
reason is that they differ from traditional
monolithic applications. Indeed, the
typical execution time of a service
(i.e. a microservice or a FaaS function)
is of the order of only a millisecond.
Further, the CPU core is often stalled,
waiting for responses to 1/O operations
to global storage or for the return of a
callee service running on another node.
This is shown in Figure 2. During the
stall time, the CPU core may choose to
context switch, in which case, the cache
is polluted by other services.

Function

Storage

-

Request

Prepare request

Download image g
o
. . ~
Resize image i
=
'_

Upload image g

Prepare response

v

Response

- Busy -Wait'ing

(a) Synchronous I/O

Other important characteristics of these
workloads are that services often exhibit
bursty invocation patterns and that
they have stringent tail-latency bounds,
requiring most of the requests (e.g. 99%)
to complete within a strict deadline.
These characteristics have important
implications, as we will see.

Rethinking the CPU
hardware

Current CPUs are not a good match for
cloud-native environments, as shown in
Table 1.

First, conventional processors have
powerful cores, with extensive hardware
for instruction level parallelism (ILP) and
large caches; cloud-native environments
execute many small-sized services that
have frequent branches, I/O invocations,
and other system calls that inhibit
ILP. Further, conventional multicores
invest significant hardware and design
complexity to support global hardware

Function1 Function2 Function 3
(Create order) (Payment) (Invoice)

Request

i:i-

Response
- Busy -Waiting

(b) Functions calling functions

Figure 2: Inefficient function patterns: (a) synchronous I/0 within a function, and (b) functions calling functions.

www.europeandissemination.eu

*

DISSEMINATION

cache coherence; services hardly share
writable datathroughmemory.Inaddition,
conventional processors incorporate
microarchitectural mechanisms for long-
running, predictable applications, such
as advanced prefetchers and branch
predictors; cloud-native environments
execute short-running services,

ACE-Center

and frequently interrupt them with
context switches. Finally, while current
processors are optimised to minimise
the average latency of programs, the
key performance target in cloud-native
environments is minimising tail latency of
service requests (e.g. improving the 99"
percentile responses).

Table 1: Mismatch between current processors and cloud-native environments.

Powerful cores and large caches

Small-sized services; low ILP

Global hardware cache coherence

No writable data sharing

Optimised for long-running, predictable
applications

Short-running services; frequent context
switching

Maximise average performance

Strict tail latency requirements

This new environment calls for a
new processor design that we call
uManycore (Stojkovic et al., 2023a).
A uManycore has many simple cores
rather than a few large cores. It does
not support global hardware cache
coherence. Instead, it has multiple small
hardware cache-coherent domains of
4-16 cores called villages. In a village,
services can communicate using shared
memory, while across villages they use
network messages. Groups of villages
form a cluster (Figure 3a), and multiple
clusters form the processor. Most
importantly, the puManycore design is
comprehensively optimised for tail-
latency reduction. This means that,
in addition to targeting inefficiencies
affecting all service requests, the design
allocates special hardware to smooth

out contention-based overheads that
may affect a subset of requests.

Table 2 shows the main sources of tail
latency and how pManycore handles
them. uManycore includes hardware
supported enqueuing, dequeuing and
scheduling of service requests, as
well as context switching. In addition,
since contention in the on-package
network is a major source of tail latency,
uManycore interconnects its clusters
in a hierarchical leaf-spine network
topology (Figure 3b). Such a network has
many redundant, low-hop-count paths
between any two source and destination
clusters. Hence, multiple messages can
proceed in parallel from the same source
to the same destination cluster without
delaying one another.

Table 2: Main sources of tail latency in a cloud-native CPU.

Request scheduling
of requests

Synchronisation and queuing

Request enqueuing,
dequeuing and scheduling
in hardware

Context switching
and restoring

OS invocation and state saving

Hardware-based context
switching

On-package network

Network link/router contention

On-package hierarchical
leaf-spine network

Harvesting hardware

In cloud-native environments, users
allocate a virtual machine (VM) or a
container (i.e. aninstance) with a specified
number of cores and amount of memory
to serve invocations (i.e. requests) for a
given service. However, the requests for
a service exhibit bursty patterns. Hence,
to attain good performance at all times,
users typically provision instances for
peak loads. As a result, cloud-native
environments exhibit low core utilisation
for most of the time.

To combat resource underuse in general
workloads, Microsoft has introduced
Harvest VMs. In a system, there are
two types of VMs: Primary and Harvest
VMs. Primary VMs run latency-critical
applications, expect high performance,
and are created with a specified number
of cores; Harvest VMs run batch
applications, have loose performance
requirements and can tolerate resource
fluctuations. Harvest VMs dynamically
grow by harvesting temporarily idle
cores owned by a Primary VM. When
the Primary VM needs its cores, it
reclaims them back. This technique can
substantially increase core utilisation.

Sadly, re-assigning a core from one VM to
another is costly. The overheads include
hypervisor calls to detach the core from
one VM and attach it to another VM,
an expensive cross-VM context switch,
and the flush and invalidation of the
re-assigned core’s private caches and
TLBs. The latter is needed to eliminate a
potential source of information leakage.
We find that the sum of all these overheads
can easily exceed 5 ms. Such overhead
is tolerable when Primary VMs run long
monolithic applications. However, it is not
acceptable in cloud-native environments
where an incoming 1-ms service request
for a Primary VM needs to wait several ms
to reclaim a core.

To enable core harvesting in cloud-native
environments, we support it in hardware.
Specifically, we augment uManycore with
the HardHarvest extensions (Stojkovic,
2025b), which target the two main
overheads of conventional software-
based core harvesting. The first overhead
is core re-assignment. To minimise it,

www.europeandissemination.eu

Clusters

Village

Figure 3: uManycore cluster (a) and the on-package interconnection of clusters into a uManycore processor (b).

HardHarvest organises the hardware
request queue into per-service subqueues.
A core is re-assigned from a Primary VM
to a Harvesting VM by being allowed to
dequeue requests from the new VM's
subqueue when the original subqueue is
empty (Figure 4). Similarly, when a new
request for a Primary VM arrives, a loaned
core is interrupted and forced to dequeue
from the original subqueue. There are no
detach/attach system calls.

The second overhead is flushing and
invalidating private caches and TLBs
on core re-assignment. To reduce it,
HardHarvest leverages the fact that
services typically have small working
sets. Specifically, HardHarvest partitions
these structures into two regions:
Harvest and non-Harvest. When a core
executes a Primary VM, it can use both

Request
Subqueue

Queue
Manager

regions; when it executes a Harvest VM,
it can only use the Harvest region. When
a core transitions between VMs, only the
Harvest region is flushed and invalidated;
the non-Harvest region preserves the
Primary VM'’s state during the core loan.

With HardHarvest, cores attain high
utilisation, the tail latency of Primary VM
requests suffers minimal or no increase,
and the throughput of Harvest VMs
workloads increases substantially.

Costly storage accesses

For high availability and fast scalability,
services in a cloud-native environment
are commonly implemented as
stateless. This means that all the data
of a service is discarded from a node
once the service is unloaded from

Request
Subqueue

ID5 D4 D3

Figure 4: A Harvest VM temporarily steals a core owned by a Primary VM to execute job ID5.

DISSEMINATION
ACE-Center

the node; any durable data must be
stored in global storage. This results in
inefficient data reuse, as subsequent
service invocations must reload their
data from global storage. Further, for
scalability and security reasons, any
communication between services must
occur through the global storage. All
these costly accesses to global storage
hurt the performance of services.

To mitigate this cost, data can be cached
locally in the memory of the nodes where
services execute.

However, distributed software caches
add a new challenge to the cloud-native
infrastructure: how to keep these caches
coherent. Unfortunately, current schemes
address this challenge in suboptimal
ways for cloud-native environments.
Specifically, most schemes cache a data
item in the memory of only a single node,
called the item’s home node. As a result,
a service invocation running on a node
frequently issues accesses to other nodes
to get data items from their homes.

An exception is Faa$T (Romero et al.,
2021), which allows a data item to be
cached in multiple nodes and uses a
versioning software protocol to keep
caches coherent. It associates a version
number with each data item. Data items
have a home node, which caches the
latest data value and version number.
When a non-home node reads the data
item, it first fetches the item’s version
number from the home, even if it caches
the data item locally. Then, it compares
the version number in the home with the
locally cached version number. If the two
numbers match, the service accesses the
data item directly from the local cache.
Otherwise, it fetches it from the home.

This protocol works well for relatively
large data items, where fetching only the
small version number is much cheaper
than fetching the entire data item.
However, it is suboptimal in cloud-native
environments, where most storage
accesses are reads to small data items.
In this case, the time to fetch the version
number is comparable to the time to
fetch the data item, and most version
comparisons are unnecessary, as writes
are rare.

www.europeandissemination.eu

w

DISSEMINATION

To attain high performance in cloud-
native settings, we use a new distributed
cache-coherence software protocol
based on invalidations. We call it Concord
(Stojkovic et al, 2025a). Invalidation-
based protocols, though common in
hardware systems, have been disregarded
indistributed software environments. The
reasons are that coherence directories
introduce fault-tolerance concerns and
that invalidation messages may scale
poorly with increasing numbers of nodes.
However, invalidation-based protocols
can be a good match for cloud-native
environments. The reasons are that
services are stateless and therefore easier
to recover from failures, and that the low
frequency of writes keeps invalidation
traffic low.

In Concord, each application is assigned

ACE-Center

the memories of the nodes where the
application runs. To make the protocol
more resilient to failures, Concord
employs write-through caching. When
a node crashes, a coordination service
redistributes the data items homed in the
crashed node. Overall, Concord achieves
high performance while enhancing fault
tolerance.

Speculative execution

Cloud-native applications are composed
of multiple services chained together.
Hence, rather than speeding up individual
services, we now consider accelerating
whole application workflows. To
understand how we can do so, consider a
smart home FaaS application composed
of seven functions (Figure 5a). The Login

former, multiple functions in sequence
read the temperature, normalise it and
compare it to a threshold. Based on the
comparison, the air conditioner may be
turned on. The workflow is shown with
condition outcomes and the data that is
passed between functions. We can see
that there are cross-function control and
data dependences.

In many applications, we find that the
outcomes of the branches that encode
cross-function control dependences are
fairly predictable. Further, since functions
are typically stateless, they often produce
the same output every time that they are
invoked with the same input. Hence, we
also find that the cross-function data
dependences are predictable.

With these insights, we propose to

a software data cache distributed across function may return true or false. If the accelerate cloud-native applications
temp temp true
e ReadTemp [—| Normalise [—| Comparelemp e > TurnAir
W -
-, \
a \
Login <. NN S
~ \
é/s@ 4 B Control Dependence N ¥
Fail — Done
Data Dependence

(a) Workflow of a smart home application

Time

1§

L4

(b) Conventional execution

Time

v

Time

ReadTemp

Normalise

CompareTemp

TurnAir

(c) Control-only speculative execution

Figure 5: Execution of a smart home Faa$ application.

v

Login

ReadTemp

Normalise
Comparelemp

TurnAir

(d) Speculative execution

www.europeandissemination.eu

using software-supported speculation.
With this approach, called SpecFaaS
(Stojkovic et al., 2023b), the functions
of an application are executed early,
speculatively, before their control and
data dependences are resolved. Control
dependences are predicted with a
software-based branch predictor like
those in processors. Data dependences
are predicted with memoization, i.e., by
maintaining a table of past input-output
pairs observed for the same function.
With this support, the execution of
downstream functions is overlapped
with that of upstream functions,
substantially reducing the end-to-end
execution time of applications. Figure
5b shows the timeline of the example
application under conventional
execution in the common case when
both branches are true. Figures
5c and d show the timelines when
using speculative execution of only
control and of both control and data,
respectively.

While a function execution s
speculative, SpecFaaS prevents its
buffered outputs from being evicted to
global storage. When the dependences

are resolved, SpecFaaS proceeds to
validate the function. If no dependence
has been Vviolated, the function
commits. Otherwise, the buffered
speculative data is discarded and the
offending functions are squashed and
re-executed.

Concluding remarks

The nascent cloud-native environments
offer many opportunities for
improvement. For example, it is
known that cloud-native services
suffer from the execution of auxiliary
operations known as datacentre tax.
They include operations such as data
compression, data encryption, and
transmission control protocol (TCP).
These operations can be sped up
with hardware accelerators. Another
area of research is how to reduce the
rising energy consumption and carbon
footprint of these environments. This
problem can be studied in the context
of many heterogeneous accelerators
and a mix of renewable and non-
renewable energy sources.

References

ACE (2025) The ACE Center for Evolvable Computing. Available at: https:/acecenter.grainger.illinois.

edu/ (Accessed: 27 October 2025).

Amazon Web Services (2025) AWS Lambda. Available at: https:/aws.amazon.com/lambda/.
Richardson, C. (2023) What are microservices? Available at: https:/microservices.io/.

Romero, F., Chaudhry, G.I., Goiri, I., Gopa, P., Batum, P., Yadwadkar, N., Fonseca, R., Kozyrakis,
C. and Bianchini, R. (2021) ‘Faa$T: A transparent auto-scaling cache for serverless applications’,
Proceedings of the 12th ACM Symposium on Cloud Computing (SoCC '21).

Stojkovic, J., Liu, C., Shahbaz, M. and Torrellas, J. (2023a) ‘uManycore: A cloud-native CPU for tail
at scale’, Proceedings of the 50th Annual International Symposium on Computer Architecture (ISCA'23).
Stojkovic, J., Xu, T., Franke, H. and Torrellas, J. (2023b) ‘SpecFaaS: Accelerating serverless
applications with speculative function execution’, Proceedings of the IEEE International Symposium
on High-Performance Computer Architecture (HPCA '23).

Stojkovic, J., Alverti, C., Andrade, A,, lliakopoulou, N., Xu, T., Franke, H. and Torrellas, J. (2025a) ‘Concord:
Rethinking distributed coherence for software caches in serverless environments, Proceedings of the
IEEE International Symposium on High-Performance Computer Architecture (HPCA '25).

Stojkovic, J., Liu, C., Shahbaz, M. and Torrellas, J. (2025b) ‘HardHarvest: Hardware-supported core
harvesting for microservices’, Proceedings of the 52nd Annual International Symposium on Computer

Architecture (ISCA '25).

CENTER EOR
EVOLVABLE
COMPUTING

ACE

PROJECT SUMMARY

The aim of the ACE Center is to devise
novel computing technologies that will
substantially improve the performance and
the energy efficiency of distributed computing.
ACE innovates in processing, storage,
communication, and security technologies
that address the seismic shifts identified in the
Semiconductor Research Corporation (SRC)
Decadal Plan for Semiconductors.

PROJECT PARTNERS

The ACE team is: Josep Torrellas (Director, Univ.
lllinois), Minlan Yu (Assistant Director, Harvard),
Tarek Abdelzaher (Univ. lllinois), Mohammad
Alian (Cornell), Adam Belay (MIT), Rajesh
Gupta (UCSD), Christos Kozyrakis (Stanford),
Tushar Krishna (GaTech), Arvind Krishnamurthy
(Univ. Washington), Jose Martinez (Cornell),
Charith Mendis (Univ. lllinois), Subhasish
Mitra (Stanford), Muhammad Shahbaz (Univ.
Michigan), Rachee Singh (Cornell), Steven
Swanson (UCSD), Michael Taylor (Univ.
Washington), Radu Teodorescu (Ohio State
Univ.), Mohit Tiwari (Univ. Texas), Mengjia Yan
(MIT), Zhengya Zhang (Univ. Michigan), and
Zhiru Zhang (Cornell).

PROJECT LEAD PROFILE

Josep Torrellas is a Professor of Computer
Science at the University of lllinois Urbana-
Champaign. His research interests are parallel
computer architectures. He has contributed to
experimental multiprocessors such as IBM'’s
PERCS Multiprocessor, Intel's Runnemede
Extreme-Scale Multiprocessor, lllinois Cedar
and Stanford DASH. He is a Fellow of IEEE,
ACM, and AAAS. He received a PhD from
Stanford University.

Jovan Stojkovic is a recent PhD graduate from
the University of lllinois Urbana-Champaign. He
will start as an Assistant Professor of Computer
Science at the University of Texas at Austin.

PROJECT CONTACTS

Josep Torrellas
201 N. Goodwin Avenue, Urbana, IL,
61801, USA.

torrella@illinois.edu

https://acecenter.grainger.lllinois.edu

https://iacoma.cs.uiuc.edu/josep/
torrellas.html

FUNDING

Semiconductor
Research
Corporation

This work was supported by the Joint University
Microelectronics Programme (JUMP 2.0) sponsored
by the Semiconductor Research Corporation (SRC)
and the Defense Advanced Research Projects
Agency (DARPA).

www.europeandissemination.eu

https://acecenter.grainger.illinois.edu/?utm_source=chatgpt.com
https://acecenter.grainger.illinois.edu/?utm_source=chatgpt.com
https://aws.amazon.com/lambda/?utm_source=chatgpt.com
https://microservices.io/
mailto:torrella%40illinois.edu?subject=
https://acecenter.grainger.Illinois.edu
https://iacoma.cs.uiuc.edu/josep/torrellas.html
https://iacoma.cs.uiuc.edu/josep/torrellas.html
https://www.src.org/program/jump2/
https://www.src.org/
https://www.darpa.mil/
https://www.darpa.mil/

