
Mosaic: Harnessing the Micro-architectural 
Resources of Servers in Serverless Environments

MICRO 2024

Jovan Stojkovic, Esha Choukse*, Enrique Saurez*, Íñigo Goiri*, Josep Torrellas
University of Illinois at Urbana-Champaign, *Microsoft Azure Research Systems



Emerging Software in the Cloud: 
Serverless Computing

Serverless computing

�Users deploy applications, providers provision 
resources
�Simple and modular programming

�Automatic resource scaling
�Pay-as-you-go model

�Microsoft Azure, AWS Lambda, Google Cloud

2



Frontend

Load 
Balancer

Container 6
Runtime
Func C

Deploy function

Functions

Invoke function

Node 2

Container 5
Runtime
Func B

Container 4
Runtime
Func B

Node 
Controller

Container 3
Runtime
Func B

Node 1

Container 2
Runtime
Func A

Container 1
Runtime
Func A

How Serverless Computing Works?

3

Node 
Controller



Contributions

�Micro-architectural characterization 
of serverless systems 

�Mosaic: an architecture for micro-
architectural resource efficiency
� Extends current processors optimized 

for monolithic applications

� Throughput boost 3.3X, power 
reduction by 22%

4



Current Processors Serverless Environments

Long-running, predictable apps Short-running services; dynamic

Beefy processors Many requests in parallel. Low 
instruction-level parallelism

Monolithic cache coherence Rarely share writable data

5

Mismatch Between Current Processors and 
Serverless Environments



Current Processors Serverless Environments

Long-running monolithic apps Short-running functions; dynamic

Beefy processors Many requests in parallel. Low 
instruction-level parallelism

Monolithic cache coherence Rarely share writable data

6

Mismatch Between Current Processors and 
Serverless Environments



Request Storage

Prepare request

Download image

Resize image

Upload image

Prepare response

Response

Function

Busy Waiting

I/O

I/O

7

Idle Time Dominates Function Execution



Request Storage

Prepare request

Download image

Resize image

Upload image

Prepare response

Response

Function

Busy Waiting

I/O

I/O

8

Function 1
(Create Order)

Function 2
(Payment)

Function 3
(Invoice)

Response

Request Call
Call

Idle Time Dominates Function Execution



9

RPCIdle

Se
rv

ic
e 

in
vo

ca
tio

n

Idle Time Dominates Function Execution



10

Need to frequently
context switch!RPCIdle

Se
rv

ic
e 

in
vo

ca
tio

n

Idle Time Dominates Function Execution



11

� Frequent context-switches interleave executions of different functions on 
the same core

� Pollution of stateful structures: caches, TLB, branch predictors

L2 Cache

Pollution of Stateful Hardware Structures



12

� Frequent context-switches interleave executions of different functions on 
the same core

� Pollution of stateful structures: caches, TLB, branch predictors

L2 Cache

Pollution of Stateful Hardware Structures



13

� Frequent context-switches interleave executions of different functions on 
the same core

� Pollution of stateful structures: caches, TLB, branch predictors

L2 Cache

Pollution of Stateful Hardware Structures



14

� Frequent context-switches interleave executions of different functions on 
the same core

� Pollution of stateful structures: caches, TLB, branch predictors

L2 Cache
Misses!

Pollution of Stateful Hardware Structures



15

0

1

2

3

4

ImgProc VidProc MLServe HotelB SocNet Average

N
or

m
. E

xe
c.

 T
im

e

Inter-2 Inter-4 Inter-8 Inter-16 ClearAll

Pollution of Stateful Hardware Structures



16

0

1

2

3

4

ImgProc VidProc MLServe HotelB SocNet Average

N
or

m
. E

xe
c.

 T
im

e

Inter-2 Inter-4 Inter-8 Inter-16 ClearAll

To maintain good function 
performance, we should 

save their micro-arch state

Pollution of Stateful Hardware Structures



Current Processors Serverless Environments

Long-running, predictable apps Short-running services; dynamic

Large monolithic applications Small data, instr, branch footprints

Monolithic cache coherence Rarely share writable data

17

Mismatch Between Current Processors and 
Serverless Environments



Opportunity: Small-sized Serverless Functions

18

� Serverless functions with small data, instruction and branch footprints

0

5

10

15

Spark GraphX Nginx WebS Hadoop Mongo ImgProc VidProc PyAES Thumbn CNNSrv RNNSrv

LL
C

 O
cc

up
a

nc
y 

[M
B]



Opportunity: Small-sized Serverless Functions

19

� Serverless functions with small data, instruction and branch footprints

0

5

10

15

Spark GraphX Nginx WebS Hadoop Mongo ImgProc VidProc PyAES Thumbn CNNSrv RNNSrv

LL
C

 O
cc

up
a

nc
y 

[M
B]

Serverless Functions



Opportunity: Small-sized Serverless Functions

20

� Small size à no need for full-sized large hardware structures

0

0.5

1

1.5

Spark GraphX Nginx WebS Hadoop Mongo ImgProc VidProc PyAES Thumbn CNNSrv RNNSrv

N
or

m
. R

sp
. T

im
e

1.875MB 1.250MB 640KB 256KBLLC Size:



Opportunity: Small-sized Serverless Functions

21

� Small size à no need for full-sized large hardware structures

0

0.5

1

1.5

Spark GraphX Nginx WebS Hadoop Mongo ImgProc VidProc PyAES Thumbn CNNSrv RNNSrv

N
or

m
. R

sp
. T

im
e

1.875MB 1.250MB 640KB 256KB

Serverless Functions

LLC Size:



Opportunity: Small-sized Serverless Functions

22

� Small size à no need for full-sized large hardware structures

0

0.2

0.4

0.6

0.8

1

1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

N
or

m
. H

it 
Ra

te

Fraction of the Nominal Size

Branch Predictor Branch Target Buffer



Opportunity: Small-sized Serverless Functions

23

� Small size à no need for full-sized large hardware structures

0

0.2

0.4

0.6

0.8

1

1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

N
or

m
. H

it 
Ra

te

Fraction of the Nominal Size

Branch Predictor Branch Target Buffer

To exploit small footprints 
of the functions, we should 

partition the structures



Current Processors Serverless Environments

Long-running, predictable apps Short-running services; dynamic

Large monolithic applications Small data, instr, branch footprints

Optimized for average latency Focus on tail; diverse functions

24

Mismatch Between Current Processors and 
Serverless Environments



Workload Heterogeneity

25

� Serverless functions highly diverse



Workload Heterogeneity

26

� Serverless functions highly diverse

For workload heterogeneity, 
we should tailor the partitions 

to specific functions



Need for Processor Generality

27

� Serverless functions colocated with monolithic workloads



Need for Processor Generality

28

� Serverless functions colocated with monolithic workloads

We need to maintain 
processor generality



Mosaic: An Architecture for FaaS Environments

29

�MosaicCPU – a processor architecture that efficiently runs both 
monolithic applications and serverless functions

�MosaicScheduler – a software stack for serverless systems that 
maximizes the benefits of MosaicCPU



30

� 4 main principles:
� Partition stateful structures into per-function tiles

� Size per-function tiles based on individual function needs
� Performance-modeling to predict optimal tile size
� Tight coupling of hardware and software

Mosaic: An Architecture for FaaS Environments



Fine-Grained Hardware Partitioning

31
Set

Way

Tag Data



Fine-Grained Hardware Partitioning

32
Set

Way

Tag Data

Chunk

� For example:
� Caches
� TLBs
� Branch units



Fine-Grained Hardware Partitioning

33

Tag Data

Chunk

Chunk

Tile

� Tile = Collection of chunks 
owned by a function
� Not always contiguous



Fine-Grained Hardware Partitioning

34

Tag Data

Chunk

Chunk

Tile

!!
!"

!#
!"



Fine-Grained Hardware Partitioning

35

Tag Data

!!
!"

!#
!"

!"



Fine-Grained Hardware Partitioning: 
Improve Performance

36

Tag Data

!!
!"

!#
!"

!#

�On a context switch, keep 
functions’ state in their tiles



Fine-Grained Hardware Partitioning:
Improve Power Efficiency

37

Tag Data

!!
!"

!#
!"

!#

� Inactive chunks at low 
voltage, saving power



Fine-Grained Hardware Partitioning:
Improve Power Efficiency

38

Tag Data

!!
!"

!#
!"

Vdd high Vdd low



39

� 4 main principles:
� Partition stateful structures into per-function tiles
� Size per-function tiles based on individual function needs

� Performance-modeling to predict optimal tile size
� Tight coupling of hardware and software

Mosaic: An Architecture for FaaS Environments



Per-Function Structure Sizing

40

� Serverless functions highly diverse à need non-uniform tile sizes

� Non-uniform tiles can cause fragmentation à need non-contiguity



41

Tag Set OffsetPA:
5..012..645..13

Accessing a Function’s Tile

Tag Data



42

Tag Chunk Set OffsetPA:
5..012..616..1345..17

Accessing a Function’s Tile

Tag Data



43

Tag Chunk Set OffsetPA:
5..012..616..1345..17

Map
ChunkID

Accessing a Function’s Tile

Tag Data



44

0

1

…

ChunkID

Tag Chunk Set OffsetPA:
5..012..616..1345..17

4 bit

Map

=

=

=

=
ChunkID

Accessing a Function’s Tile

Tag Data



45

0

1

…

ChunkID

Tag Chunk Set OffsetPA:
5..012..616..1345..17

1

0

1

0

…

Active

4 bit 1 bit

Chunk
Enable

Map

=

=

=

=
ChunkID

Accessing a Function’s Tile

Tag Data



46

Tag Chunk Set OffsetPA:
5..012..616..1345..17

Accessing a Function’s Tile

Tag Data

0

1

…

ChunkID
1

0

1

0

…

Active

4 bit 1 bit

Chunk
Enable

Map

=

=

=

=
ChunkID



47

Tag Chunk Set OffsetPA:
5..012..616..1345..17

Accessing a Function’s Tile

Tag Data

0

1

…

ChunkID
1

0

1

0

…

Active

4 bit 1 bit

Chunk
Enable

Map

=

=

=

=
ChunkID



48

Tag Chunk Set OffsetPA:
5..012..616..1345..17

Accessing a Function’s Tile

Tag Data

0

1

…

ChunkID
1

0

1

0

…

Active

4 bit 1 bit

Chunk
Enable

Map

=

=

=

=
ChunkID



49

� 4 main principles:
� Partition stateful structures into per-function tiles
� Size per-function tiles based on individual function needs
� Performance-modeling to predict optimal tile size

� Tight coupling of hardware and software

Mosaic: An Architecture for FaaS Environments



Performance Modeling for Optimal Tile Size

50

Tag Data

!"

� Execute the function 
with some tile size

� Record misses in 
caches, BTB, BPT, TLBs



Performance Modeling for Optimal Tile Size

51

Tag Data

!"

�Deduce the trend of 
per-structure misses 

� Predict the misses for 
the non-profiled tile sizes



Performance Modeling for Optimal Tile Size

52

Tag Data

!"

� Performance model à
minimal tile size that keeps 
performance under SLO



Transfer Learning for Lower Profiling Overheads

53

Database of already profiled functions

Func Char.

[L2$, L2TLB, LLC, BTB, BPT][IPC, Data and Inst. 
Footprint, Num. Branch] 

Optimal Tile Size

[.., .., .., .., .., .., .., .., ..][.., .., .., ..] 

[.., .., .., .., .., .., .., .., ..][.., .., .., ..] 

[.., .., .., .., .., .., .., .., ..][.., .., .., ..] 



Transfer Learning for Lower Profiling Overheads

54

Database of already profiled functions

Func Char.

[L2$, L2TLB, LLC, BTB, BPT][IPC, Data and Inst. 
Footprint, Num. Branch] 

Optimal Tile Size

[.., .., .., .., .., .., .., .., ..][.., .., .., ..] 

[.., .., .., .., .., .., .., .., ..][.., .., .., ..] 

[.., .., .., .., .., .., .., .., ..][.., .., .., ..] 

"#$%& Char
[IPC, Data, 
Instr, Branch]



Transfer Learning for Lower Profiling Overheads

55

Database of already profiled functions

Func Char.

[L2$, L2TLB, LLC, BTB, BPT][IPC, Data and Inst. 
Footprint, Num. Branch] 

Optimal Tile Size

[.., .., .., .., .., .., .., .., ..][.., .., .., ..] 

[.., .., .., .., .., .., .., .., ..][.., .., .., ..] 

[.., .., .., .., .., .., .., .., ..][.., .., .., ..] 

"#$%& Char
[IPC, Data, 
Instr, Branch]

Random 
Forest 

Classifier



Transfer Learning for Lower Profiling Overheads

56

Database of already profiled functions

Func Char.

[L2$, L2TLB, LLC, BTB, BPT][IPC, Data and Inst. 
Footprint, Num. Branch] 

Optimal Tile Size

[.., .., .., .., .., .., .., .., ..][.., .., .., ..] 

[.., .., .., .., .., .., .., .., ..][.., .., .., ..] 

[.., .., .., .., .., .., .., .., ..][.., .., .., ..] 

"#$%& Char
[IPC, Data, 
Instr, Branch]

Random 
Forest 

Classifier

Predicted "#$%&
Optimal Size



57

� 4 main principles:
� Partition stateful structures into per-function tiles
� Size per-function tiles based on individual function needs
� Performance-modeling to predict optimal tile size
� Tight coupling of hardware and software

Mosaic: An Architecture for FaaS Environments



Optimized Software Stack:
Online Micro-architectural Aware Scheduling

58

States Table
"#$%'
"#$%(

States Table
"#$%'
"#$%&

States Table
"#$%(
"#$%&



Optimized Software Stack:
Online Micro-architectural Aware Scheduling

59

States Table
"#$%'
"#$%(

Scheduler

"#$%&

States Table
"#$%'
"#$%&

States Table
"#$%(
"#$%&

Predict execution and 
queuing time on each core



Optimized Software Stack:
Online Micro-architectural Aware Scheduling

60

States Table
"#$%'
"#$%(

Scheduler

"#$%&

States Table
"#$%'
"#$%&

States Table
"#$%(
"#$%&

Pick core that minimizes 
total response time



Optimized Software Stack:
Offline Performance Modeling

61

States Table
"#$%'
"#$%(

Scheduler

"#$%&

Database
/Predictor

States Table
"#$%'
"#$%&

States Table
"#$%(
"#$%&

"#$%& )*++,+



Optimized Software Stack:
Offline Performance Modeling

62

States Table
"#$%'
"#$%(

Scheduler

"#$%&

Database
/Predictor

"#$%& Optimal Tile Sizes

States Table
"#$%'
"#$%&

States Table
"#$%(
"#$%&



Evaluation Methodology

63

� Full-system simulations: QEMU + SST + DRAM-Sim2
� 16-core server modeled after Golden Cove in SPR
� McPAT + CACTI for power and area estimates
� Open-source functions with Azure production invocation traces



Mosaic Significantly Boosts Throughput

640
1
2
3
4
5
6

Th
ro

ug
hp

ut
 [k

RP
S]

ServerClass Mosaic



Mosaic Significantly Boosts Throughput

650
1
2
3
4
5
6

Th
ro

ug
hp

ut
 [k

RP
S]

ServerClass Mosaic

Throughput increase by 3.3x 
over server-class baseline!



Conclusion

� Imbalance between current processors and serverless environments
� Mosaic – an architecture for serverless environments

� Extends current processors optimized for monolithic applications

� Mosaic delivers high performance for serverless workloads
� Tail latency reduced by 75%

� Throughput improved 3.3x

� Average power reduced by 22%
66



Questions?

67



Mosaic: Harnessing the Micro-architectural 
Resources of Servers in Serverless Environments

MICRO 2024

Jovan Stojkovic, Esha Choukse*, Enrique Saurez*, Íñigo Goiri*, Josep Torrellas
University of Illinois at Urbana-Champaign, *Microsoft Azure Research Systems


