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Emerging Software in the Cloud: 
Serverless Computing

Serverless computing

�Users deploy applications, providers provision 
resources
�Simple and modular programming

�Automatic resource scaling
�Pay-as-you-go model

�Microsoft Azure, AWS Lambda, Google Cloud
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Contributions

�Micro-architectural characterization 
of serverless systems 

�Mosaic: an architecture for micro-
architectural resource efficiency
� Extends current processors optimized 

for monolithic applications

� Throughput boost 3.3X, power 
reduction by 22%
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Current Processors Serverless Environments

Long-running, predictable apps Short-running services; dynamic

Beefy processors Many requests in parallel. Low 
instruction-level parallelism

Monolithic cache coherence Rarely share writable data
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Mismatch Between Current Processors and 
Serverless Environments



Current Processors Serverless Environments

Long-running monolithic apps Short-running functions; dynamic

Beefy processors Many requests in parallel. Low 
instruction-level parallelism

Monolithic cache coherence Rarely share writable data
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Mismatch Between Current Processors and 
Serverless Environments
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Idle Time Dominates Function Execution
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� Frequent context-switches interleave executions of different functions on 
the same core

� Pollution of stateful structures: caches, TLB, branch predictors

L2 Cache

Pollution of Stateful Hardware Structures
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� Frequent context-switches interleave executions of different functions on 
the same core

� Pollution of stateful structures: caches, TLB, branch predictors

L2 Cache
Misses!

Pollution of Stateful Hardware Structures
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To maintain good function 
performance, we should 

save their micro-arch state

Pollution of Stateful Hardware Structures



Current Processors Serverless Environments

Long-running, predictable apps Short-running services; dynamic

Large monolithic applications Small data, instr, branch footprints

Monolithic cache coherence Rarely share writable data
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Mismatch Between Current Processors and 
Serverless Environments



Opportunity: Small-sized Serverless Functions
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� Serverless functions with small data, instruction and branch footprints
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Opportunity: Small-sized Serverless Functions
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� Serverless functions with small data, instruction and branch footprints
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Opportunity: Small-sized Serverless Functions
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� Small size à no need for full-sized large hardware structures
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Opportunity: Small-sized Serverless Functions
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� Small size à no need for full-sized large hardware structures
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Opportunity: Small-sized Serverless Functions
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� Small size à no need for full-sized large hardware structures

0

0.2

0.4

0.6

0.8

1

1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

N
or

m
. H

it 
Ra

te

Fraction of the Nominal Size

Branch Predictor Branch Target Buffer



Opportunity: Small-sized Serverless Functions
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� Small size à no need for full-sized large hardware structures
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To exploit small footprints 
of the functions, we should 

partition the structures



Current Processors Serverless Environments

Long-running, predictable apps Short-running services; dynamic

Large monolithic applications Small data, instr, branch footprints

Optimized for average latency Focus on tail; diverse functions

24

Mismatch Between Current Processors and 
Serverless Environments



Workload Heterogeneity
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� Serverless functions highly diverse



Workload Heterogeneity
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� Serverless functions highly diverse

For workload heterogeneity, 
we should tailor the partitions 

to specific functions



Need for Processor Generality
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� Serverless functions colocated with monolithic workloads



Need for Processor Generality
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� Serverless functions colocated with monolithic workloads

We need to maintain 
processor generality



Mosaic: An Architecture for FaaS Environments
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�MosaicCPU – a processor architecture that efficiently runs both 
monolithic applications and serverless functions

�MosaicScheduler – a software stack for serverless systems that 
maximizes the benefits of MosaicCPU
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� 4 main principles:
� Partition stateful structures into per-function tiles

� Size per-function tiles based on individual function needs
� Performance-modeling to predict optimal tile size
� Tight coupling of hardware and software

Mosaic: An Architecture for FaaS Environments



Fine-Grained Hardware Partitioning
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Fine-Grained Hardware Partitioning
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� For example:
� Caches
� TLBs
� Branch units



Fine-Grained Hardware Partitioning
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� Tile = Collection of chunks 
owned by a function
� Not always contiguous



Fine-Grained Hardware Partitioning
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Fine-Grained Hardware Partitioning
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Fine-Grained Hardware Partitioning: 
Improve Performance
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�On a context switch, keep 
functions’ state in their tiles



Fine-Grained Hardware Partitioning:
Improve Power Efficiency
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� Inactive chunks at low 
voltage, saving power



Fine-Grained Hardware Partitioning:
Improve Power Efficiency
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� 4 main principles:
� Partition stateful structures into per-function tiles
� Size per-function tiles based on individual function needs

� Performance-modeling to predict optimal tile size
� Tight coupling of hardware and software

Mosaic: An Architecture for FaaS Environments



Per-Function Structure Sizing
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� Serverless functions highly diverse à need non-uniform tile sizes

� Non-uniform tiles can cause fragmentation à need non-contiguity
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� 4 main principles:
� Partition stateful structures into per-function tiles
� Size per-function tiles based on individual function needs
� Performance-modeling to predict optimal tile size

� Tight coupling of hardware and software

Mosaic: An Architecture for FaaS Environments



Performance Modeling for Optimal Tile Size
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� Execute the function 
with some tile size

� Record misses in 
caches, BTB, BPT, TLBs



Performance Modeling for Optimal Tile Size
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Tag Data
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�Deduce the trend of 
per-structure misses 

� Predict the misses for 
the non-profiled tile sizes



Performance Modeling for Optimal Tile Size
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Tag Data
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� Performance model à
minimal tile size that keeps 
performance under SLO



Transfer Learning for Lower Profiling Overheads
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Database of already profiled functions

Func Char.

[L2$, L2TLB, LLC, BTB, BPT][IPC, Data and Inst. 
Footprint, Num. Branch] 

Optimal Tile Size

[.., .., .., .., .., .., .., .., ..][.., .., .., ..] 

[.., .., .., .., .., .., .., .., ..][.., .., .., ..] 

[.., .., .., .., .., .., .., .., ..][.., .., .., ..] 



Transfer Learning for Lower Profiling Overheads
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Transfer Learning for Lower Profiling Overheads
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Transfer Learning for Lower Profiling Overheads

56
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� 4 main principles:
� Partition stateful structures into per-function tiles
� Size per-function tiles based on individual function needs
� Performance-modeling to predict optimal tile size
� Tight coupling of hardware and software

Mosaic: An Architecture for FaaS Environments



Optimized Software Stack:
Online Micro-architectural Aware Scheduling
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Optimized Software Stack:
Online Micro-architectural Aware Scheduling
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Optimized Software Stack:
Online Micro-architectural Aware Scheduling
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Optimized Software Stack:
Offline Performance Modeling
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Optimized Software Stack:
Offline Performance Modeling
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Evaluation Methodology
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� Full-system simulations: QEMU + SST + DRAM-Sim2
� 16-core server modeled after Golden Cove in SPR
� McPAT + CACTI for power and area estimates
� Open-source functions with Azure production invocation traces



Mosaic Significantly Boosts Throughput
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Mosaic Significantly Boosts Throughput
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Throughput increase by 3.3x 
over server-class baseline!



Conclusion

� Imbalance between current processors and serverless environments
� Mosaic – an architecture for serverless environments

� Extends current processors optimized for monolithic applications

� Mosaic delivers high performance for serverless workloads
� Tail latency reduced by 75%

� Throughput improved 3.3x

� Average power reduced by 22%
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Questions?
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