ILLINOIS

AAAAAA ~CHAMPAIGN

uManycore:

A Cloud-Native CPU for Tail at Scale

ISCA 2023

Jovan Stojkovic, Chunao Liu*, Muhammad Shahbaz*, Josep Torrellas

University of lllinois at Urbana-Champaign, *Purdue University

Emerging Software in the Cloud:

Microservices

o Large monolithic applications decomposed into many small interdependent services

o Each service implements separate functionality

o Many benefits:
o Scalability
o Design simplicity
o HW management

L
- —m TN
. A
$A
- %
Simplified Architecture Actual Architecture

Netflix architecture: simplified and actual scheme (source)

Structure of microservices at Amazon. Looks almost like a Death
Star but is way more powerful.

Frontend Logic : Caching & Storage

Read Home U e (LUERlEET) - User storage
Timeline

Media s
Frontend V4 —

Timeli
‘ \!”, — & storage
User . ; .
v RabbitMQ S asaiay Social graph 2
»bv storage
‘!
: __—7

Memcached § SVIongoDE N VIR (e Te (-]

M Redis

User timeline
M DB
storage

Home timeline

Social Write Home
Graph Timeline

Contributions

O Characterization of microservice

systems with conventional processors vilage vilage
¥ M Pool R t Q
O Propose pManycore — a processor [Reavesi Queve | - [ENE e moin [EEETETRETN)
architecture highly optimized for Lo _ el Reat) e
. . | Mostly Memory
microservice workloads ©OO©® e [e ©©
O Chiplet-based design with multiple small ~ Vilage = — vilage
hardware cache-coherent domains [Reavestqueve | e | |10 /o VO | | Comic [Request Queve |
LMEM .L Network Hub j LMEM [L2 |
O Hierarchical leaf-spine interconnection | = | /0 “(NH) /0
network on backaae RINIC __r "l__ RNIC
packag Ceoe BEHmrm | [t 00e®

O In-hardware request scheduling and
context switching

O Tail latency reduction 10.4X, throughput
improvement 15.5X 3

Mismatch Current Processors vs Microservices

Current Processors Microservice Environments

Maximize average performance Stringent tail latency constraints

Many requests in parallel. Low instruction-level

Beefy processors ;
parallelism

Monolithic cache coherence Microservices rarely share writable data

Optimized for long-running, predictable apps

(orefetchers, branch predictors) Short-running services; dynamic environment

Designing Processors for Tail Latency

X

X

O Response time determined _.I_
by the slowest service — —
O Identify and optimize away HP_ -_— - —
sources of contention — —

O On-package network “_

O Request queuing and _.I_

scheduling Frontend Mid-Tier Backend Servers

Server Server

O Context switching

Hotspots in on-package network

O Inter-process communication due to RPCs and storage accesses

O Lots of on-package messages

Multi-hop routes

!
!
!

Contention aft links

Hotspots in on-package network

O Inter-process communication due to RPCs and storage accesses
O Lots of on-package messages

O Contention at the on-package network can hurt the tail latency

B No Contention

> 15

O

-

S 10

g

5 5

Z 1K RPS 5K RPS 10K RPS 50K RPS /

Invocation Rate

Hotspots in on-package network

O Inter-process communication due to RPCs and storage accesses
O Lots of on-package messages

O Contention at the on-package network can hurt the tail latency

B No Contention m®2D Mesh

> 15

O

c

0 10

9

=

g 0 - | — . — —

% 1K RPS 5K RPS 10K RPS 50K RPS 8

Invocation Rate

Hotspots in on-package network

O Inter-process communication due to RPCs and storage accesses
O Lots of on-package messages

O Contention at the on-package network can hurt the tail latency

B No Contention ®2D Mesh BFafTree

> 15

O

C

9

l_

% 1K RPS 5K RPS 10K RPS 50K RPS 9

Invocation Rate

Hotspots in on-package network

O Inter-process communication due to RPCs and storage accesses
O Lots of on-pack

O Contention at the
We need a high-bandwidth and low-latency on-

package network
> 15
O]
(-
S
|_
g 1K RPS 5K RPS 10K RPS 50K RPS 10

Invocation Rate

Hotspots in request queuing and scheduling

O Service requests come in bursts and need to be queued before execution
O Design of the queueing system can impact tail latency

11

Hotspots in request queuing and scheduling

O Service requests come in bursts and need to be queued before execution

O Design of the queueing system can impact tail latency

——Tail ——=Average
4000

3000

1000 —

Pra—

Norm. Latency

1024 512 256 128 64 32 16 8 4 2 1 12
Number of queues in a 1K-core manycore

Hotspots in request queuing and scheduling

O Service requests come in bursts and need to be queued before execution

O Design of the queueing system can impact tail latency

——Tail ——=Average
4000

3000
Even optimal software queue

2000 \\ Tail 10x average!
1000 . ’ 1 ’

1024 512 256 128 64 32 16 8 4 2 1 13
Number of queues in a 1K-core manycore

Norm. Latency

Hotspots in request queuing and scheduling

O Service requests come in bursts and need to be queued before execution

O Design of the queueing system can impact tail latency

4000 We need a specialized hardware for request

3000 queueing and scheduling

2000

1000 . 1 °

1024 512 256 128 64 32 16 8 4 2 1 14
Number of queues in a 1K-core manycore

Norm. Latency

Hotspots in context switching

O Services spend majority of their execution time blocked, waiting on I/O

O Remote storage accesses, or synchronous calls to other services

§ Need to perform frequent

_ RPC context switches! E §

o
el T Frrrrl

Service invocation

15

Hotspots in context switching

O Services spend majority of their execution time blocked, waiting on I/O

O Remote storage accesses, or synchronous calls to other services

——5K RPS ==10K RPS ==50K RPS

(O3]
o

30

20

s

Norm. Tail Latency

(@]

16 32 64 128 256 512 1024 2048 4096 8192 16
Context Switch Overhead (cycles)

Hotspots in context switching

O Services spend majority of their execution time blocked, waiting on I/O

O Remote storage accesses, or synchronous calls to other services

——5K RPS ==10K RPS ==50K RPS

.. 50 — :
0 0 Shinjuku Linux
QL Shenango
S 30 ZygOS
2 20
&
s 10
y 4._-‘___(,/

O o= -

16 32 64 128 256 512 1024 2048 4096 8192 17

Context Switch Overhead (cycles)

Hotspots in context switching

O Even highly specialized software context switching penalty not negligible

——5K RPS ==10K RPS ==50K RPS

.. 50 — :
0 0 Shinjuku Linux
QL Shenango
S 30 ZygOS
2 20
&
s 10
y 4._-‘___(,/

O o= -

16 32 64 128 256 512 1024 2048 4096 8192 18

Context Switch Overhead (cycles)

Hotspots in context switching

O Even highly specialized software context switching penalty not negligible

——5K RPS ==10K RPS ==50K RPS

> 90 SHiMOK :
@)
2 10 Hardware hlnjU U Linux
© Solution SNENCINES
= 30 LygOS
2 20
&
Z

O C= -~ —

16 32 64 128 256 512 1024 2048 4096 8192 19

Context Switch Overhead (cycles)

Hotspots in context switching

O Even highly specialized software context switching penalty not negligible

We need a specialized hardware support for
context switching U Linux

INQO

30)

20

10 . __/

s &

(O3]
(@)

Norm. Tail Latency

(@

16 32 64 128 256 512 1024 2048 4096 8192 20
Context Switch Overhead (cycles)

Is chip-wide monolithic cache coherence

needed?

O Services use RPCs for the communication, no shared memory

rRPC RPC

<> <> <>

[Memory] 1

Is chip-wide monolithic cache coherence

needed?

O Services use RPCs for the communication, no shared memory

C
) We will slice the monolithic coherence into many
</> small independent coherence domains

-1 —
ITTTTI ITTTTI ITTTTI

[Memory] 29

Basic unit of yManycore: a hardware cache-

coherent Village

Village

Request Queue

L-NIC

L2

L-MEM

GGG

R-NIC

R-MEM

23

Hardware for Request Scheduling

O NIC deposits ready requests to the queue
O Cores spin on Work flag, execute Dequeue instruction, finish with Complete instruction

Request Queue (circular)
—| NIC Status w | R

> _— eo» o eo» o e ov o] a2 o v o o

Service ID Serv-A| Serv-A

24

Hardware for Request Scheduling

O NIC deposits ready requests to the queue
O Cores spin on Work flag, execute Dequeue instruction, finish with Complete instruction

Request Queue (circular)
—| NIC Status w | R

> _— eo» o eo» o e ov o] a2 o v o o

Service ID Serv-A| Serv-A

25

Hardware for Request Scheduling

O NIC deposits ready requests to the queue
O Cores spin on Work flag, execute Dequeue instruction, finish with Complete instruction

Request Queue (circular)
—| NIC Status R R

> _— eo» o eo» o e ov o] a2 o v o o

Service ID Serv-A| Serv-A

26

Hardware for Request Scheduling

O NIC deposits ready requests to the queue
O Cores spin on Work flag, execute Dequeue instruction, finish with Complete instruction

Request Queue (circular)
——| NIC Status F | _F

QVICG ID Serv-A| Serv-A

27

Hardware for Context Switching

O Requests can get blocked during execution — need to context switch

, Request Queue (circular)
E— NIC Status | | _ LB | R |
Service ID Serv-A| Serv-A

28

Hardware for Context Switching

O Avoid OS invocations and software overheads
O Core saves and restores context in hardware

Request Queue (circular) Request Context Memory
4 Status | _ 1 _ LB | R_L__ : State for Req]
Service ID | [serv-Alsen-Al
Req Ptr ? | ¢ ' State for Reg2

29

Hardware for Context Switching

O Avoid OS invocations and software overheads
O Core saves and restores context in hardware

Request Queue (circular) Request Context Memory

—| NIC
> Status | J_ LW I R_L__ ' State for Req]
Service ID | [sevAsev-Al
Req Ptr ? | ¢ ' State for Reg2

30

Hardware for Context Switching

O Avoid OS invocations and software overheads
O Core saves and restores context in hardware

Request Queue (circular) Request Context Memory
——| NIC Status w | R :
> . . i A State for Req]
Service ID | [sevAsev-Al
Req Pir ' | ¢ ' State for Reg?2

31

Hardware for Context Switching

O Avoid OS invocations and software overheads
O Core saves and restores context in hardware

Request Queue (circular) Request Context Memory
——| NIC Status w | R :
> . . i A State for Req]
Service ID | [sevAsev-Al
Req Pir ' | ¢ ' State for Reg?2

v
T 111111 T T IT

32

Hardware for Context Switching

O Avoid OS invocations and software overheads
O Core saves and restores context in hardware

Request Queue (circular) Request Context Memory

—| NIC
Status R R ”
> I [(AT [P, A A State for Req
Service ID | [serv-Alsen-Al =
Req Pir ' | ¢ ' State for Reg?2

33

Villages grouped into clusters

O The combination of a few villages, a memory pool, and a network hub 2> a cluster

Village Village

Request Queue R-NIC Memory Pool R-NIC Request Queue

[R-MEM [R-MEM
| L2 | Shared Read- | L2 |
[e Mostly Memory | T | S
OOOO 5 0000
L-MEM R-MEM

Village 1l — 3 Village

Request Queue LNIC | | /o /0 /0 _ L-NIC Request Queue
|) | LMEM l Network Hub J- LMEM | 2 |

/O NH I/O
LLo]lu o e e | / (NH) |] L)l o]
EOOE | e [fe1 000 y
Package Package
— —

Leaf-spine on-package network

O Many redundant, low-hop count paths between any two clusters

- D St e |

(e pi” g iy - _p s gt]|]) - —
'ONH ENH 2 NH NH 3 NH O NH N 2 NH
1====" I—===" == -===" I-===" —===" ====" ===
| :I y g " h N g :
S| ISy T P, IDUUY I, U] B,
S=~I=z=2>. /v =zl =zZ=2=-"7
~-===\-.,\._/‘.—t’==—
35

Clusters

Leaf-spine on-package network

O Many redundant, low-hop count paths between any two clusters

O Even between the same source and destination multiple parallel links

NH NH NH NH

NH NH NH NH NH NH NH NH

36

Hierarchical leaf-spine on-package network

O Many redundant, low-hop count paths between any two clusters

e e
[NH] [NA] [NH]
\\;‘.14:5:{4:{‘?;‘:5"(‘\ » D e e R \
Aéfé:e's:%f$s\ /Aé:?:é'@:%f%s\
/7?///< RIS A NN
NH| [NH| |NH| [NH| |NH| [NH]| | NH| | NH NH| [NH| |NH| [NH| |NH]| [NH| |NH]| [NH

Evaluation Setup

O 1024-core uManycore

O DeathStarBench microservices

O PinTool to extract fraces

O SST for cycle-accurate timing measurements
O MCcPAT + Cacti for power/area measurements

O Two baselines

Modeled After _| Design Point

ServerClass 40 Intel Ice-Lake Same Power as
uManycore
LargeManycore 1024 ARM A15 Same Area as

uManycore 38

uManycore Significantly Reduces Tail

B ServerClass

Text Sgraph User PstStr UsrMnt HomeT Cpost UrlShort Average

Norm. Tail Latency
©c o o O
N N o~ (00) -

(@]

DeathStarBench Microservices 39

uManycore Significantly Reduces Tail

m ServerClass ®LargeManycore

Text Sgraph User PstStr UsrMnt HomeT Cpost UrlShort Average

J—

Norm. Tail Latency
o o O
N o~ (0]

©
N

(@]

DeathStarBench Microservices 40

uManycore Significantly Reduces Tail

B ServerClass ®LargeManycore B puManycore

Text Sgraph User PstStr UsrMnt HomeT Cpost UrlShort Average

J—

Norm. Tail Latency
o o O
N o~ (0]

©
N

(@]

DeathStarBench Microservices 4]

uManycore Significantly Reduces Tail

B ServerClass ®LargeManycore B puManycore

In high load, tail latency reduced by 16.7x over
ServerClass and 7.4x over LargeManycore
- IL T I N TN s I I

Text Sgraph User PstStr UsrMnt HomeT Cpost UrlShort Average

J—

o
o

o
o~

o
~

Norm. Tail Latency

o
N

(@]

DeathStarBench Microservices 42

O Imbalance between current processors and emerging microservice environments

O uManycore - an architecture optimized for microservice environments

O uManycore delivers high performance for microservice workloads
O 10.4X reduced tail latency
O 15.5X improved throughput

43

uManycore:

A Cloud-Native CPU for Tail at Scale

ISCA 2023

Jovan Stojkovic, Chunao Liu*, Muhammad Shahbaz*, Josep Torrellas

University of lllinois at Urbana-Champaign, *Purdue University
44

Simulation Parameters

ScaleOut == LargeManycore

Table 2: Architectural parameters used in the evaluation.

ServerClass Multicore
Multicore 40 (or 128) 6-issue cores, 352-entry ROB, 256-entry LSQ, 3GHz
L1 cache 64KB, 8-way, 2 cycles round trip (RT), 64B line
L2 cache 2MB, 16-way, 16 cycles RT, 20 MSHRs
L3 cache 2MB/core, 16-way, 40 cycles RT, 20 MSHRs
L1 DTLB 256 entries, 4-way, 2 cycles RT
L2 DTLB 2048 entries, 12-way, 12 cycles RT
Network 2D mesh

pManycore and ScaleOut Manycores
Manycore 1024 4-issue cores, 64-entry ROB, 64-entry LSQ, 2GHz
L1 cache 64KB, 8-way, 2 cycles RT, 64B line
L2 cache 256KB, 16-way, 24 cycles RT, 20 MSHRs
L1 DTLB 128 entries, 4-way, 2 cycles RT
Network Fat tree (ScaleOut), leaf-spine (uManycore)
Network

Intra server 5 cycles/hop (4 router delay + 1 wire delay) [9]

Inter server

1us RT; 200GB/s

Main-memory per Server

Capacity

Channels; Banks
Frequency; Rate
Mem bandwidth

80GB

4;8

1GHz; DDR

8 memory controllers; 102.4GB/s per controller

45

Tail Latency with Different Loads

On average, uManycore reduces the tail latency

over ServerClass by 6.3%, 8.3%, and 16.7
over ScaleOut by 5.4%, 6.5%, and 7.4x

3 ServerClass I ScaleOut [pManycore
3.5 3.9 . 3l 40 |

Text SGraph User PstStr UsrMnt HomeT CPost UrlShort Average
(a) Load of 5K RPS.

3 ServerClass N ScaleOut [uManycore
8.0 10.3

SGraph User PstStr UsrMnt HomeT CPost UrlShort Average
(b) Load of 10K RPS.

3 ServerClass I ScaleOut [pManycore
22:3 25.2

Text SGraph User PstStr UsrMnt HomeT CPost UrlShort Average
(c) Load of 15K RPS.

Figure 14: Tail latency in ServerClass, ScaleOut, and 46
pManycore normalized to ServerClass. The numbers on top
of the ServerClass bars are the absolute latency values in ms.

Tail Latency Breakdown

On average, the cumulative application of these
techniques reduces the tail latency by 1.1x%, 2.3x,
3.9%, and 7.4x%, respectively

I HW Context Switch

Villages [Leaf-spine ICN [HW Scheduling

Tail Lat. Reduc. (times)
)

Text SGraph User PstStr UsrMnt HomeT CPost UrlShort Average

Figure 15: Contributions of the four main yManycore tech-
niques to the reduction of tail latency for 15K RPS. Latency
reductions are normalized to the tail latency of ScaleOut.

Average Latency with Different Loads

On average, uManycore reduces the average
latency over ServerClass by 2.3x%, 3.2x, and 5.6x%
for loads of 5K, 10K, and 15K RPS, respectively,
and over ScaleOut by 2.1x, 2.5%, and 3.2x for the
same loads

- = ServerClass I ScaleOut [pManycore
o] 5 § 7 §]] 0.5
RS

Text SGraph User PstStr UsrMnt HomeT CPost UrlShort Average
(a) Load of 5K RPS.

3 ServerClass EEl ScaleOut [uManycore
1.3 1.5 2.1 . 1:3

Text SGraph User PstStr UsrMnt HomeT CPost UrlShort Average
(b) Load of 10K RPS.

3 ServerClass B ScaleOut [pManycore
.38 52 114 36

Text SGraph User PstStr UsrMnt HomeT CPost UrlShort Average
(c) Load of 15K RPS.

Figure 16: Average latency in ServerClass, ScaleOut, and
liManycore normalized to ServerClass. The numbers on top
of the ServerClass bars are the absolute latency values in ms.

48

Average Latency with Different Loads

Topology Configuration (# cores per village, # villages per cluster, # clusters)

puManycore reaches « & [Em 8xax32 mm 32x1x32 £ 32x2x16 MR 32x4x8 1
average, uManycore £ 1.0f lass and
ScaleOut baselines, i 5 38 |

£ 0.41

s 0.27 1ycore

=00 SGraph User PstStr UsrMnt HomeT CPost UrlShort Average E

Figure 19: Normalized tail latency with different pManycore

configurations.
E I_-) PEC— i i I
S e 1

0 Text SGraph User PstStr UsrMnt HomeT CPost UrlShort Average

Figure 18: Normalized maximum throughput a system can
achieve without violating QoS guarantees. The numbers on
top of the uManycorebars are the absolute throughput values 49

that yuManycore achieves.

Sensitivity Study on Village Sizes

All configurations are within 15% of each other’s tail latency

Topology Configuration (# cores per village, # villages per cluster, # clusters)

@ 8x4x32 B 32x1x32 [32x2x16 I 32x4x8

orm. Tail Latency
COoOO KM

bt
N

N
o
=]

UsrMnt HomeT CPost UrlShort Average

Text SGraph User PstStr

Figure 19: Normalized tail latency with different yManycore

configurations. 50

Iso-area ServerClass Baseline

O In the iso-power configurations, uManycore has 2.9% more area than ScaleOut and 3.1x
more area than the 40-core ServerClass (i.e., 547.2mm?2 for uManycore versus 176.1mm?2 for
ServerClass)

O For an iso-area comparison, we keep uManycore and ScaleOut unchanged and we scale
ServerClass to 128 cores, while leaving all the other parameters unmodified

O ServerClass processor improves the performance significantly, matching and sometimes
slightly outperforming the tail latency of ScaleOut

O ServerClass still has a tail latency that is on average 7.3x higher than the uManycore one
across all loads and applications

O Also, the 128-core ServerClass processor uses an unacceptably large amount of power,
namely 3.2x more than uManycore.

S

