
SpecFaaS:
Accelerating Serverless Applications
with Speculative Function Execution

HPCA 2023
Jovan Stojkovic, Tianyin Xu, Hubertus Franke*, Josep Torrellas
University of Illinois at Urbana-Champaign

*IBM Research

Serverless Computing: Why do we want it?

� Breaking large monolithic applications into many small functions
� Ease of programming

� Elasticity

� Pay-as-you-go model
� Opportunity for high resource utilization

� Economic incentives

� AWS Lambda, Microsoft Azure, Google Cloud, IBM Cloud

Upload Violence
Detector

Extract
Text Translate Word

Censor

Mosaic

Serverless Computing: How does it work?

Frontend

Load
Balancer

Invoker

Container 6

Runtime

Func C

Deploy function

Functions

Invoke function

Node 2

Container 5

Runtime

Func A

Container 4

Runtime

Func B

Invoker

Container 3

Runtime

Func B

Node 1

Container 2

Runtime

Func A

Container 1

Runtime

Func A

Real-world Applications

� Functions composed into applications with control and data dependences

Contributions

� Characterization of serverless environments

� Propose SpecFaaS – novel serverless execution model based on speculation
� Functions execute before their control and data dependences are resolved

� Control dependences are predicted with branch prediction

� Data dependences are speculatively satisfied with memoization

� Average speedup 4.6X

Outline of this talk

� Characterization of Serverless Environments
�

�

�

�

Short Functions, Huge Overheads

24 ms
25 ms
20 ms

200 ms

1500 ms

Function Execution
Transfer Function Overhead
Platform Overhead

Runtime Setup

Container Creation

Platform: OpenWhisk

Short Functions, Huge Overheads

24 ms
25 ms
20 ms

200 ms

1500 ms

Function Execution
Transfer Function Overhead
Platform Overhead

Runtime Setup

Container Creation

Platform: OpenWhisk

2s overhead for 20ms execution!

Short Functions, Huge Overheads

24 ms
25 ms
20 ms

200 ms

1500 ms

Function Execution
Transfer Function Overhead
Platform Overhead

Runtime Setup

Container Creation

Platform: OpenWhisk

2s overhead for 20ms execution!Can we minimize and/or overlap overheads?
Can we even overlap executions?

SpecFaaS Overview:
Dependence Speculation

Normalize

(a) Conventional Execution

Login ReadTemp CompareTemp TurnAir

Time

(b) Control-only Speculative Execution

Login

ReadTemp

Normalize

CompareTemp

TurnAir

Time

Login
ReadTemp

Normalize
CompareTemp

TurnAir

(c) Data + Control Speculative Execution

Time

SpecFaaS Overview:
Mis-speculation

Login

ReadTemp

Fail

(a) Control mis-speculation

Time

ReadTemp

SpecFaaS Overview:
Mis-speculation

Login

ReadTemp

Fail

(a) Control mis-speculation

Time

(b) Data mis-speculation

Login

ReadTemp

Normalize

CompareTemp

TurnAir

Time

Normalize

CompareTemp

TurnAir

CompareTemp

TurnAir

Normalize

1. Control Dependences are Predictable

� Branches and conditional function calls create workflow divergence

� Sequence of functions highly predictable
� Exception and error handling code rarely executed

� Most popular sequence accounts for
� 90% of invocations with Alibaba

� 98% of invocations with TrainTicket

1. Control Dependences are Predictable

� Branches and conditional function calls create workflow divergence

� Sequence of functions highly predictable
� Exception and error handling code rarely executed

� Most popular sequence accounts for
� 90% of invocations with Alibaba

� 98% of invocations with TrainTicketWe will develop a SW branch predictor to pick
the next function to execute early, speculatively

2. Data Dependences are Predictable

� Most functions, given an input, generate the same output
� They rarely depend on modifiable global state

� 76% for TrainTicket, 85% for FaaSChain

2. Data Dependences are Predictable

� Most functions, given an input, generate the same output
� They rarely depend on modifiable global state

� 76% for TrainTicket, 85% for FaaSChainWe will memoize input/output value pairs for a
given function and use it for speculative predictions

2. Data Dependences are Predictable

� Most functions, given an input, generate the same output
� They rarely depend on modifiable global state

� 76% for TrainTicket, 85% for FaaSChainWe will memoize input/output value pairs for a
given function and use it for speculative predictions
Many functions are pure: deterministic + no side-effects
We could completely skip execution of pure functions!

3. Communication via Global Storage is Rare

� Functions can communicate via remote storage

� Remote storage is not frequently updated
� Azure Blob storage traces: only 23% writes, 66% of blobs never updated

Storage

Producer

Consumer

Write A

Read A

3. Communication via Global Storage is Rare

� Functions can communicate via remote storage

� Remote storage is not frequently updated
� Azure Blob storage traces: only 23% writes, 66% of blobs never updated

Storage

Producer

Consumer

Write A

Read A

We will monitor implicit dependencies, but
squashes will be rare

CPUs Not Fully Utilized

� CPUs are not fully utilized in the cloud
� Need to handle load spikes and be prepared for the worst-case scenario

� Alibaba Cloud: CPUs always in the range 60-80%

CPUs Not Fully Utilized

� CPUs are not fully utilized in the cloud
� Need to handle load spikes and be prepared for the worst-case scenario

� Alibaba Cloud: CPUs always in the range 60-80%

There are extra cycles to absorb some mis-speculation

Outline of this talk

�

� SpecFaaS: Speculative Execution Engine of Serverless Applications
� SpecFaaS Design and Implementation

�

�

SpecFaaS Design:
High-Level Overview

FaaS Workflow

𝑓!

𝑓" 𝑓#

𝑓$

𝑓%

Sequence Table
with Branch

Predictor

Memoization
Tables

Validator/
Squasher Data Buffer

Scheduler

𝑓!𝑓"𝑓$𝑓%

Function Execution Pipeline

Controller

Parallel
Workers

Remote
Storage

Worker
1 𝑓!

Worker
2

Worker
3

Worker
4𝑓" 𝑓# 𝑓$

SpecFaaS Design:
Sequence Table with Branch Predictor

𝑓!
𝑓"
𝑓#

…

𝑓$

Path
1

Prob
Take

Path
2

Prob
Take

𝑓%

Sequence Table with Branch Predictor

SpecFaaS Design:
Memoization Tables

Memoization Tables

Input Values Output Values

SpecFaaS Design:
Data Buffer

Record 2

Record 1

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖 − 1 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖 + 1

V R W Data V R W Data V R W Data

1 1

1

Value 1
Value 2

Address

1

Data Buffer

Outline of this talk

�

� SpecFaaS: Speculative Execution Engine of Serverless Applications
�

� SpecFaaS Key Results

�

Experimental Setup

� 5 AMD Epyc servers, each 24 2-way SMT cores

� Platform: OpenWhisk

� Baseline: ideal sequential execution
� All cold starts eliminated

� Various applications from three benchmark suites:
� TrainTicket, FaaSChain and Alibaba

� 3 system loads: low, medium and high

SpecFaaS Delivers High Speedups!

Average speedup 4.6X over ideal sequential execution!

Conclusion

� Serverless computing brings benefits, but its execution is inefficient

� Propose SpecFaaS – novel serverless execution model based on speculation for
performance
� Functions execute before their control and data dependences are resolved

� Control dependences are predicted with branch prediction

� Data dependences are speculatively satisfied with memoization

� Data Buffer buffers speculative updates

� Average speedup 4.6X

SpecFaaS:
Accelerating Serverless Applications
with Speculative Function Execution

HPCA 2023
Jovan Stojkovic, Tianyin Xu, Hubertus Franke*, Josep Torrellas
University of Illinois at Urbana-Champaign

*IBM Research

Questions?

SpecFaaS: More in the Paper!

� Efficient support for implicit workflows

� Minimizing cost and frequency of mis-speculation

� Handling different side-effects

� …

Backup Slides:
FaaSChain Applications

Backup Slides:
SpecFaaS Branch Predictor Sensitivity

Average Speedup (FaaSChain):
100% hit rate = 5.2X
90% hit rate = 5X
70% hit rate = 4.6X
50% hit rate = 4X

Improvement due to squash optimization
90% hit rate = 1.28X
70% hit rate = 1.35X
50% hit rate = 1.43X

Backup Slides:
SpecFaaS Support for Implicit Workflows

Backup Slides:
SpecFaaS Mis-Speculation Handling

� Main challenge with SpecFaaS: it becomes expensive on mis-speculation

� There are 3 options

� Option 1: Let the mis-speculated function request (invocation) finish in the background
and ignore all its global updates
� No squashing, uses precious CPU cycles

� Option 2: Squash the function request by killing the container
� No waste of CPU cycles, expensive squash operation (stopping the container ~10s in the

background + cannot reuse container for latter invocations)

� Option 3: Squash the function request by killing the handler process
� No waste of CPU cycles, cheap squash operation (~1ms), can reuse container

Backup Slides:
SpecFaaS Side-Effects Handling

� Three main sources of side-effects
� Writing to global storage, writing to local files, sending HTTP requests

� SpecFaaS able to deal with writes to the global storage via Data Buffer
� Writing to local files à CoW for Files (intercept file syscalls)

� For every request (invocation) we start with the initial shared files
� As long as the request only reads from the files, it uses the original files
� Once the request tries to write to the file, it gets its own temp copy of the file
� When the request completes its execution discard all temporary files

� Sending HTTP requests à Stall (intercept sendto syscall)
� Once we detect a request tries to send data via socket, we stall the operation until the request

becomes non-speculative

Backup Slides:
SpecFaaS Producer-Consumer Handling

� Functions can communicate over the storage when data is larger than the allowed input
size defined by the FaaS platform
� FuncA producer writes to the storage, FuncB consumer reads from the storage

� If a consumer prematurely reads from the storage à need to squash it (used stale data)

� Controller can detect that a function is frequently squashed due to RAW dependence
violation à introduce STALL operation

� Avoid squashing by stalling until data becomes available
� Previous writer/producer wrote to the storage (data buffer)

� Previous writer/producer completed its execution

