ILLINOIS

AAAAAA ~CHAMPAIGN

SpecFaas:
Accelerating Serverless Applications

with Speculative Function Execution

HPCA 2023

Jovan Stojkovic, Tianyin Xu, Hubertus Franke*, Josep Torrellas

University of lllinois at Urbana-Champaign

*IBM Research

Serverless Computing: Why do we want ite

O Breaking large monolithic applications into many small functions
O Ease of programming
O Elasticity

O Pay-as-you-go model
O Opportunity for high resource utilization

O Economic incentives

O AWS Lambda, Microsoft Azure, Google Cloud, IBM Cloud

Violence

Detector iesele
Extract Word

Text Translate EarEar

Serverless Computing: How does it work?

Balancer

Invoker

Invoker

Container 1

Runtime

Container 2

Container 3

Container 4

Container 5

Runtime

Runtime

Runtime

Container 6

Runtime

Runtime

Real-world Applications

O Functions composed into applications with control and data dependences

tem tem true)
,@"’ ,I ReadTemp A Normalize N CompareTemp k= =» TurnAir
- \
Login k SN
\ ——— — %

\
’34\01 Fail Control Dependence Data Dependence 1 Done

Contiributions

O Characterization of serverless environments

O Propose SpecFaas — novel serverless execution model based on speculation
O Functions execute before their control and data dependences are resolved
O Control dependences are predicted with branch prediction
O Data dependences are speculatively satisfied with memoization

O Average speedup 4.6X

Outline of this talk

O Characterization of Serverless Environments

O SpecFaas: Speculative Execution Engine of Serverless Applications
O SpecFaas Design and Implementation
O SpecFaasS Key Results

O Conclusion

Short Functions, Huge Overheads

Function Execution Platform: OpenWhisk

Transfer Function Overhead
Platform Overhead

Runtime Setup

Container Creation 1500 ms

Short Functions, Huge Overheads

Function Execution 24 ms Platform: OpenWhisk
Transfer Function Overhead SR E

Platforn

Runtimq

2s overhead for 20ms execution!

Contai

Short Functions, Huge Overheads

Function Execution 24 ms Platform: OpenWhisk
Transfer Function Overhead SR E

Can we minimize and/or overlap overheads?
Can we even overlap executions?

SpecFaal Overview:

Dependence Speculation

Time

tem tem true
<\\\°,| ReadTemp I—p-I Normalize l——pﬁl CompareTemp k --I TurnAir |
’ \
~
\

ILogink\ .,

———i \
64'@1 Fail I Control Dependence Data Dependence

gﬁ\e

v

Login

ReadTemp | Normalize

CompareTemp | TurnAir

Time

(a) Conventional Execution

o
»

Login

ReadTemp

Normalize

CompareTemp

TurnAir

(b) Conftrol-only Speculative Execution

Time

v

Login

ReadTemp

Normalize

CompareTemp

TurnAir

(c) Data + Conftrol Speculative Execution

SpecFaas Overview:
Mis-speculation

\o\?‘ ,4 ReadTemp Iﬂ'l Normalize m-l CompareTemp Fru-e-l TurnAir |
I Login k : "\\
—_———

———i \
’54\8’1 Fail | Control Dependence Data Dependence

g‘:\e

Time

A 4

Login

Fail

(a) Control mis-speculation

SpecFaas Overview:
Mis-speculation

\o\° ,.I ReadTemp Iﬂ,'l Normalize m-l CompareTemp an-l TurnAir |
I Login k: /"\\
—_—_ -

———i \
’566’1 Fail | Control Dependence Data Dependence

g‘:\e

Time Time
> >
Login Login
ReadTemp
Fail Normalize
CompareTemp
TurnAir

(a) Control mis-speculation (b) Data mis-speculation

1. Control Dependences are Predictable

O Branches and conditional function calls create workflow divergence

O Sequence of functions highly predictable T

O Exception and error handling code rarely executed

O Most popular sequence accounts for

O 90% of invocations with Alibaba
O 98% of invocations with TrainTicket

el
SetOrderFailed
Amazon DynamoDB

Lambda function .
\ RefundCustomer
gﬂ SetOrderCompleted
Lambda function
Amazon DynamoDB v v A
- NotifyFailure]
&'
& N
v:.E‘ Amazon SNS

Amazon SNS

1. Control Dependences are Predictable

O Branches and conditional function calls create workflow divergence

O Sequence of functions highly predictable

1

F AWS Step Functions workflow
~l | Al ~l 1 1l

O Exce
O Most po

O 90%
O 98%

We will develop a SW branch predictor to pick
the next function to execute early, speculatively

SetOrderFailed
DB

=

2. Data Dependences are Predictable

O Most functions, given an input, generate the same output
O They rarely depend on modifiable global state
O 76% for TrainTicket, 85% for FaaSChain

2. Data Dependences are Predictable

O Most fl
O The

o763 We will memoize input/output value pairs for a
given function and use it for speculative predictions

2. Data Dependences are Predictable

O Most fl
O The
O 769

Many functions are pure: deterministic + no side-effects

1 We could completely skip execution of pure functions!

3. Communication via Global Storage is Rare

O Functions can communicate via remote storage

O Remote storage is not frequently updated

O Azure Blob storage tfraces: only 23% writes, 66% of blobs never updated

Producer

N[e]fele]

3. Communication via Global Storage is Rare

O Functions can communicate via remote storage

O Remotes
O Azure

We will monitor implicit dependencies, but
squashes will be rare

=

Read A

CPUs Not Fully Utilized

O CPUs are not fully utilized in the cloud

O Need to handle load spikes and be prepared for the worst-case scenario
O Alibaba Cloud: CPUs always in the range 60-80%

0.0 0.2 0.4 0.6 0.8
CPU Utilization

CPUs Not Fully Utilized

O CPUs are not fully utilized in the cloud
O
O

19 There are extra cycles to absorb some mis-speculation

0.8
E 0.6
O 0.4|
0.2' igg///
0.01 ¢ : : : .
0.0 0.2 0.4 0.6 0.8

CPU Utilization

Outline of this talk

O Characterization of Serverless Environments
O SpecFaas: Speculative Execution Engine of Serverless Applications
O SpecFaasS Desigh and Implementation

O SpecFaasS Key Results

O Conclusion

SpecFaas Design:

High-Level Overview

FaaS Workflow

R
fs
—
i

Conftroller

Sequence Table
with Branch
Predictor

Memoization
Tables

Validator/
Squasher

Function Execution Pipeline

. d

fa | fs | H | fo
I
Scheduler —

Remote
Storage

Data Buffer
—"'f" /‘ ‘

== \ v
(I
Worker Worker Worker Worker Parallel
1 fi 2 f 3 f 4 f, | Workers

SpecFaas Design:

Sequence Table with Branch Predictor

-p Sequence Table with Branch Predictor

Path | Prob Path | Prob
] Take 2 Take

FaaS Workflow Controller
Sequence Table 4/ Function Execution Pipeline
v with Branch ¢ 1L
Predictor | _"’ﬁ, |f3 \f; |fo ‘
Memoization —
/' Tables Scheduler =
Validator/ Remote
Squcsher Data Buffer > St
S o
R \/\ N v

|
Worker ~ Worker ~ Worker ~ Worker | Parallel
11 2fs 3 4 f, Workers

SpecFaas Design:

Memoization Tables

Memoization Tables

Input Values Qutput Values
I ! | !
| | | |
| | | |
) | | | |
FaaS Workflow Controller . 1 . .
Sequence Table Function Eyecution Pipeline
v with Branch
Predictor m
Memoization __="
/' Tables Scheduler -
Validator/
Squasher Data Buffer » Remote
/’\'&; v « S Storage
- \/\ N v

Worker ~ Worker ~ Worker Worker | Pparallel

1 fe 25 | 34 4 fo | Workers

SpecFaas Design:

Data Buffer

FaaS Workflow

Controller
Sequence Table

v with Branch

Predictor

Memoization

7 Tables

Validator/
Squasher

Scheduler

Data Buffer

Functioni — 1 Function i Functioni + 1
Address
VIR|W Data RIW Data VIR|W Data
Record 1|1, , 1, Valuel o I
Record2| ' 1 ! o 171" value 2

Data Buffer

Worker
1 fa

Worker

2 f;

Worker
4 f,

T
Worker
3f

» Remote
Storage

Parallel

Workers

Outline of this talk

O Characterization of Serverless Environments

O SpecFaas: Speculative Execution Engine of Serverless Applications
O SpecFaas Design and Implementation
O SpecFaasS Key Results

O Conclusion

Experimental Setup

@)
@)

O

O

5 AMD Epyc servers, each 24 2-way SMT cores
Platform: OpenWhisk
Baseline: ideal sequential execution
O All cold starts eliminated
Various applications from three benchmark suites:
O TrainTicket, FoaSChain and Alibaba

3 system loads: low, medium and high

SpecFaas Delivers High Speedups!

] Low Load 1 Medium Load B High Load
7 ,,
Qb]
=]
T 5 1
] y _
V4 +--—--—140-HER-118 R -1 B--—=--t+BR-1{ -+ ------- =N ==
Q
n 3 — | I® |l
o 5 1M o
é 1 m- | |
0 - .
Q Q . 0
O
v)
s

Average speedup 4.6X over ideal sequential execution!

O Serverless computing brings benefits, but its execution is inefficient

O Propose SpecFaas$ — novel serverless execution model based on speculation for
performance

O Functions execute before their control and data dependences are resolved
O Control dependences are predicted with branch prediction

O Data dependences are speculatively satisfied with memoization

O Data Buffer buffers speculative updates

O Average speedup 4.6X

ILLINOIS

AAAAAA ~CHAMPAIGN

SpecFaas:
Accelerating Serverless Applications

with Speculative Function Execution

HPCA 2023

Jovan Stojkovic, Tianyin Xu, Hubertus Franke*, Josep Torrellas

University of lllinois at Urbana-Champaign

*IBM Research

SpecFaas: More in the Paper!

O Efficient support for implicit workflows

O Minimizing cost and frequency of mis-speculation
O Handling different side-effects

o ...

Backup Slides:

FaaSChain Applications

Login OGN Flight Booking | | Hotel Booking Smart Home Online Purchase TOGIN
LOGIN LOGIN LOGIN
—_ | FAIL |-—| CHECK FLIGHT |
FAIL ADDRESS T - FIND FAIL ?EEIC:;
RESERVE NEAR
Banking F"'?“T ! ‘/
CHOOSE NORMALIZE
LOGIN CANCEL CHECK esiascont CLOSE RG
o~ FLIGHT HOTEL T |
T
FAIL ﬁg‘i‘c& RESERVE CHECK COT“:;':,RE REGA | |REGB
HOTEL AVAIL
v 6/\ 4 ¥
WITHDRAW CANCEL CHECK RESERVE TURN AR RETURN RESERVE
MO& — HOTEL CAR HOTEL ITEM AVAIL ITEM
¥ N
RECEIPT | RECEIPT |-—| RESERVE CAR RECEIPT DONE ;:ENCE'i —1{ PAY [~ RECEIPT

Backup Slides:

SpecFaa$s Branch Predictor Sensitivity

[100% N 90% EE 70% EE 50%

Average Speedup (FaaSChain):
100% hit rate = 5.2X — - =
90% hit rate = 5X 1
70% hit rate = 4.6X
50% hit rate = 4X

~

o

w

»

w

Avg. Speedup

N

Improvement due to squash optimization
90% hit rate = 1.28X

70% hit rate = 1.35X
50% hit rate = 1.43X Login Banking FlightBook HotelBook SmartH OnlPurch Average

=

o

Backup Slides:

SpecFaas Support for Implicit Workflows

Time
Hidle A

SNy

(a) Execution Workflow

| pathl1 | ProbTake || Path2 | ProbTake |
v | [Pathl | ProbTake |[Path2 | ProbTake |

filnputs £, Inputs f3 Inputs f; Outputs

(b) Sequence Table with Branch Predictor

(c) Memoization table

Time
10 ty | t2 i ts
Time Time fi
Call, f Call, f5 Call f, Call f; f2 ! i
f fi & | | |
£ £ v A 2 f Lo fs v A :
fs [] 2 PPN e e e 8 e e S e

(d) Conventional Execution of an (e) SpecFaaS Execution of an
Implicit Workflow Implicit Workflow (f) Data Buffer

Backup Slides:

SpecFaas Mis-Speculation Handling

O

@)

Main challenge with SpecFaas: it becomes expensive on mis-speculation
There are 3 options

Option 1: Let the mis-speculated function request (invocation) finish in the background
and ignore all its global updates

O No squashing, uses precious CPU cycles

Option 2: Squash the function request by killing the container

O No waste of CPU cycles, expensive squash operation (stopping the container ~10s in the
background + cannot reuse container for latter invocations)

Option 3: Squash the function request by killing the handler process

O No waste of CPU cycles, cheap squash operation (~1ms), can reuse container

Backup Slides:

SpecFaas Side-Effects Handling

O Three main sources of side-effects
O Writing to global storage, writing to local files, sending HTTP requests
O SpecFaas able to deal with writes to the global storage via Data Buffer
O Writing to local files > CoW for Files (intercept file syscalls)
O For every request (invocation) we start with the initial shared files
O Aslong as the request only reads from the files, it uses the original files
O Once the request tries to write to the file, it gets its own temp copy of the file
O When the request completes its execution discard all temporary files
O Sending HTTP requests - Stall (intercept sendto syscall)

O Once we detect arequest tries to send data via socket, we stall the operation until the request
becomes non-speculative

Backup Slides:

SpecFaas Producer-Consumer Handling

@)

Functions can communicate over the storage when data is larger than the allowed input
size defined by the FaasS platform

O FuncA producer writes to the storage, FuncB consumer reads from the storage
If a consumer prematurely reads from the storage - need to squash it (used stale data)

Controller can detect that a function is frequently squashed due to RAW dependence
violation = introduce STALL operation

Avoid squashing by stalling until data becomes available
O Previous writer/producer wrote to the storage (data buffer)

O Previous writer/producer completed its execution

