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Serverless Computing: Why do we want it?

� Breaking large monolithic applications into many small functions
� Ease of programming

� Elasticity

� Pay-as-you-go model
� Opportunity for high resource utilization

� Economic incentives

� AWS Lambda, Microsoft Azure, Google Cloud, IBM Cloud
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Serverless Computing: How does it work?
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Real-world Applications

� Functions composed into applications with control and data dependences



Contributions

� Characterization of serverless environments

� Propose SpecFaaS – novel serverless execution model based on speculation
� Functions execute before their control and data dependences are resolved

� Control dependences are predicted with branch prediction

� Data dependences are speculatively satisfied with memoization

� Average speedup 4.6X



Outline of this talk

� Characterization of Serverless Environments
�

�

�

�
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Short Functions, Huge Overheads

24 ms
25 ms
20 ms

200 ms

1500 ms

Function Execution
Transfer Function Overhead
Platform Overhead

Runtime Setup

Container Creation

Platform: OpenWhisk

2s overhead for 20ms execution!Can we minimize and/or overlap overheads? 
Can we even overlap executions?



SpecFaaS Overview: 
Dependence Speculation
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SpecFaaS Overview:
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SpecFaaS Overview:
Mis-speculation
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1. Control Dependences are Predictable

� Branches and conditional function calls create workflow divergence

� Sequence of functions highly predictable
� Exception and error handling code rarely executed

� Most popular sequence accounts for
� 90% of invocations with Alibaba

� 98% of invocations with TrainTicket



1. Control Dependences are Predictable

� Branches and conditional function calls create workflow divergence

� Sequence of functions highly predictable
� Exception and error handling code rarely executed

� Most popular sequence accounts for
� 90% of invocations with Alibaba

� 98% of invocations with TrainTicketWe will develop a SW branch predictor to pick 
the next function to execute early, speculatively



2. Data Dependences are Predictable

� Most functions, given an input, generate the same output
� They rarely depend on modifiable global state

� 76% for TrainTicket, 85% for FaaSChain
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2. Data Dependences are Predictable

� Most functions, given an input, generate the same output
� They rarely depend on modifiable global state

� 76% for TrainTicket, 85% for FaaSChainWe will memoize input/output value pairs for a 
given function and use it for speculative predictions
Many functions are pure: deterministic + no side-effects
We could completely skip execution of pure functions! 



3. Communication via Global Storage is Rare

� Functions can communicate via remote storage

� Remote storage is not frequently updated
� Azure Blob storage traces: only 23% writes, 66% of blobs never updated
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3. Communication via Global Storage is Rare

� Functions can communicate via remote storage

� Remote storage is not frequently updated
� Azure Blob storage traces: only 23% writes, 66% of blobs never updated
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We will monitor implicit dependencies, but 
squashes will be rare



CPUs Not Fully Utilized

� CPUs are not fully utilized in the cloud
� Need to handle load spikes and be prepared for the worst-case scenario

� Alibaba Cloud: CPUs always in the range 60-80%



CPUs Not Fully Utilized

� CPUs are not fully utilized in the cloud
� Need to handle load spikes and be prepared for the worst-case scenario

� Alibaba Cloud: CPUs always in the range 60-80%

There are extra cycles to absorb some mis-speculation



Outline of this talk

�

� SpecFaaS: Speculative Execution Engine of Serverless Applications
� SpecFaaS Design and Implementation

�

�



SpecFaaS Design: 
High-Level Overview
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SpecFaaS Design: 
Sequence Table with Branch Predictor 
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SpecFaaS Design:
Memoization Tables
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SpecFaaS Design:
Data Buffer
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Outline of this talk

�

� SpecFaaS: Speculative Execution Engine of Serverless Applications
�

� SpecFaaS Key Results

�



Experimental Setup

� 5 AMD Epyc servers, each 24 2-way SMT cores

� Platform: OpenWhisk

� Baseline: ideal sequential execution
� All cold starts eliminated

� Various applications from three benchmark suites:
� TrainTicket, FaaSChain and Alibaba

� 3 system loads: low, medium and high



SpecFaaS Delivers High Speedups!

Average speedup 4.6X over ideal sequential execution!



Conclusion

� Serverless computing brings benefits, but its execution is inefficient

� Propose SpecFaaS – novel serverless execution model based on speculation for 
performance
� Functions execute before their control and data dependences are resolved

� Control dependences are predicted with branch prediction

� Data dependences are speculatively satisfied with memoization

� Data Buffer buffers speculative updates

� Average speedup 4.6X
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Questions?



SpecFaaS: More in the Paper!

� Efficient support for implicit workflows

� Minimizing cost and frequency of mis-speculation

� Handling different side-effects

� …



Backup Slides: 
FaaSChain Applications



Backup Slides: 
SpecFaaS Branch Predictor Sensitivity

Average Speedup (FaaSChain):
100% hit rate = 5.2X
90% hit rate = 5X
70% hit rate = 4.6X
50% hit rate = 4X

Improvement due to squash optimization 
90% hit rate = 1.28X
70% hit rate = 1.35X
50% hit rate = 1.43X



Backup Slides: 
SpecFaaS Support for Implicit Workflows



Backup Slides: 
SpecFaaS Mis-Speculation Handling

� Main challenge with SpecFaaS: it becomes expensive on mis-speculation

� There are 3 options

� Option 1: Let the mis-speculated function request (invocation) finish in the background 
and ignore all its global updates
� No squashing, uses precious CPU cycles

� Option 2: Squash the function request by killing the container
� No waste of CPU cycles, expensive squash operation (stopping the container ~10s in the 

background + cannot reuse container for latter invocations)

� Option 3: Squash the function request by killing the handler process
� No waste of CPU cycles, cheap squash operation (~1ms), can reuse container



Backup Slides: 
SpecFaaS Side-Effects Handling

� Three main sources of side-effects
� Writing to global storage, writing to local files, sending HTTP requests

� SpecFaaS able to deal with writes to the global storage via Data Buffer
� Writing to local files à CoW for Files (intercept file syscalls)

� For every request (invocation) we start with the initial shared files
� As long as the request only reads from the files, it uses the original files
� Once the request tries to write to the file, it gets its own temp copy of the file
� When the request completes its execution discard all temporary files

� Sending HTTP requests à Stall (intercept sendto syscall)
� Once we detect a request tries to send data via socket, we stall the operation until the request 

becomes non-speculative



Backup Slides: 
SpecFaaS Producer-Consumer Handling

� Functions can communicate over the storage when data is larger than the allowed input 
size defined by the FaaS platform
� FuncA producer writes to the storage, FuncB consumer reads from the storage

� If a consumer prematurely reads from the storage à need to squash it (used stale data)

� Controller can detect that a function is frequently squashed due to RAW dependence 
violation à introduce STALL operation

� Avoid squashing by stalling until data becomes available
� Previous writer/producer wrote to the storage (data buffer)

� Previous writer/producer completed its execution 


