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Serverless Computing: Why do we want ite

O Breaking large monolithic applications into many small functions
O Ease of programming
O Elasticity

O Pay-as-you-go model
O Opportunity for high resource utilization

O Economic incentives

O AWS Lambda, Microsoft Azure, Google Cloud, IBM Cloud
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Serverless Computing: How does it work?
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Real-world Applications

O Functions composed into applications with control and data dependences
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Contiributions

O Characterization of serverless environments

O Propose SpecFaas — novel serverless execution model based on speculation
O Functions execute before their control and data dependences are resolved
O Control dependences are predicted with branch prediction
O Data dependences are speculatively satisfied with memoization

O Average speedup 4.6X



Outline of this talk

O Characterization of Serverless Environments

O SpecFaas: Speculative Execution Engine of Serverless Applications
O SpecFaas Design and Implementation
O SpecFaasS Key Results

O Conclusion



Short Functions, Huge Overheads

Function Execution Platform: OpenWhisk

Transfer Function Overhead
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Runtime Setup

Container Creation 1500 ms




Short Functions, Huge Overheads

Function Execution 24 ms Platform: OpenWhisk
Transfer Function Overhead SR E
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Short Functions, Huge Overheads

Function Execution 24 ms Platform: OpenWhisk
Transfer Function Overhead SR E

Can we minimize and/or overlap overheads?
Can we even overlap executions?




SpecFaal Overview:

Dependence Speculation
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SpecFaas Overview:
Mis-speculation
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SpecFaas Overview:
Mis-speculation
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1. Control Dependences are Predictable

O Branches and conditional function calls create workflow divergence

O Sequence of functions highly predictable T

O Exception and error handling code rarely executed

O Most popular sequence accounts for

O 90% of invocations with Alibaba
O 98% of invocations with TrainTicket
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1. Control Dependences are Predictable

O Branches and conditional function calls create workflow divergence

O Sequence of functions highly predictable
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We will develop a SW branch predictor to pick
the next function to execute early, speculatively
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2. Data Dependences are Predictable

O Most functions, given an input, generate the same output
O They rarely depend on modifiable global state
O 76% for TrainTicket, 85% for FaaSChain



2. Data Dependences are Predictable

O Most fl
O The

o763 We will memoize input/output value pairs for a
given function and use it for speculative predictions




2. Data Dependences are Predictable

O Most fl
O The
O 769

Many functions are pure: deterministic + no side-effects

1 We could completely skip execution of pure functions!




3. Communication via Global Storage is Rare

O Functions can communicate via remote storage

O Remote storage is not frequently updated

O Azure Blob storage tfraces: only 23% writes, 66% of blobs never updated
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3. Communication via Global Storage is Rare

O Functions can communicate via remote storage

O Remotes
O Azure

We will monitor implicit dependencies, but
squashes will be rare
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CPUs Not Fully Utilized

O CPUs are not fully utilized in the cloud

O Need to handle load spikes and be prepared for the worst-case scenario
O Alibaba Cloud: CPUs always in the range 60-80%
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CPUs Not Fully Utilized

O CPUs are not fully utilized in the cloud
O
O

19 There are extra cycles to absorb some mis-speculation
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Outline of this talk

O Characterization of Serverless Environments
O SpecFaas: Speculative Execution Engine of Serverless Applications
O SpecFaasS Desigh and Implementation

O SpecFaasS Key Results

O Conclusion



SpecFaas Design:

High-Level Overview

FaaS Workflow
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SpecFaas Design:

Sequence Table with Branch Predictor
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SpecFaas Design:

Memoization Tables

Memoization Tables
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SpecFaas Design:

Data Buffer
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Outline of this talk

O Characterization of Serverless Environments

O SpecFaas: Speculative Execution Engine of Serverless Applications
O SpecFaas Design and Implementation
O SpecFaasS Key Results

O Conclusion



Experimental Setup

@)
@)

O

O

5 AMD Epyc servers, each 24 2-way SMT cores
Platform: OpenWhisk
Baseline: ideal sequential execution
O All cold starts eliminated
Various applications from three benchmark suites:
O TrainTicket, FoaSChain and Alibaba

3 system loads: low, medium and high



SpecFaas Delivers High Speedups!
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Average speedup 4.6X over ideal sequential execution!



O Serverless computing brings benefits, but its execution is inefficient

O Propose SpecFaas$ — novel serverless execution model based on speculation for
performance

O Functions execute before their control and data dependences are resolved
O Control dependences are predicted with branch prediction

O Data dependences are speculatively satisfied with memoization

O Data Buffer buffers speculative updates

O Average speedup 4.6X
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SpecFaas: More in the Paper!

O Efficient support for implicit workflows

O Minimizing cost and frequency of mis-speculation
O Handling different side-effects

o ...



Backup Slides:

FaaSChain Applications
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Backup Slides:

SpecFaa$s Branch Predictor Sensitivity
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Backup Slides:

SpecFaas Support for Implicit Workflows
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Backup Slides:

SpecFaas Mis-Speculation Handling
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Main challenge with SpecFaas: it becomes expensive on mis-speculation
There are 3 options

Option 1: Let the mis-speculated function request (invocation) finish in the background
and ignore all its global updates

O No squashing, uses precious CPU cycles

Option 2: Squash the function request by killing the container

O No waste of CPU cycles, expensive squash operation (stopping the container ~10s in the
background + cannot reuse container for latter invocations)

Option 3: Squash the function request by killing the handler process

O No waste of CPU cycles, cheap squash operation (~1ms), can reuse container



Backup Slides:

SpecFaas Side-Effects Handling

O Three main sources of side-effects
O Writing to global storage, writing to local files, sending HTTP requests
O SpecFaas able to deal with writes to the global storage via Data Buffer
O Writing to local files > CoW for Files (intercept file syscalls)
O For every request (invocation) we start with the initial shared files
O Aslong as the request only reads from the files, it uses the original files
O Once the request tries to write to the file, it gets its own temp copy of the file
O When the request completes its execution discard all temporary files
O Sending HTTP requests - Stall (intercept sendto syscall)

O Once we detect arequest tries to send data via socket, we stall the operation until the request
becomes non-speculative



Backup Slides:

SpecFaas Producer-Consumer Handling
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Functions can communicate over the storage when data is larger than the allowed input
size defined by the FaasS platform

O FuncA producer writes to the storage, FuncB consumer reads from the storage
If a consumer prematurely reads from the storage - need to squash it (used stale data)

Controller can detect that a function is frequently squashed due to RAW dependence
violation = introduce STALL operation

Avoid squashing by stalling until data becomes available
O Previous writer/producer wrote to the storage (data buffer)

O Previous writer/producer completed its execution



