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Virtual Memory and Page Tables

O Virtual memory is an essential technique in modern computing systems
O Memory virtualization
O Process isolation

O Virtual memory performance depends on the page table organization
O Radix page tables — slow and not scalable
O Hashed page tables — memory inefficient



Radix Page Tables:

Memory-Efficient Multi-Level Trees

L1- PGD L2- PUD L3- PMD L4- PTE




Radix Page Walk:

Expensive Pointer Chase

x86-64 Radix Page Tables

Virtual Address
47 ... 39 38...30 29 ... 21 20 ...12 11...0
Address A 9-bits 9-bits 9-bits 9-bits Page Offset
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Hashed Page Tables

g Page walk requires a single memory access

PGD PUD PMD PIE

\ ’ Hashed
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Hashed Page Tables

e Hash collisions
PGD PUD PMD PTE-A

Hashed
Page Table




Hashed Page Tables:
Recent Advances Make Them Compelling

Elastic Cuckoo Page Tables (ECPTs)
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Outline of this talk

O Problem: Contiguous Memory Requirements of Hashed Page Tables
O ME-HPTs: Memory-Efficient Hashed Page Tables

O ME-HPTs Design

O ME-HPTs Key Results

O Conclusion
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Hashed Page Tables:

Large Contiguous Memory Chunks

O With hashed page tables — unity of allocation is one way of the page table

PAl With large memory applications, e
size of a way can be 10s-100s of MBs!

e.g., GUPS, SysBench 64MB per way




Hashed Page Tables:

Contiguity is Expensive!

O Finding large contfiguous memory chunks is expensive in busy fragmented servers
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Hashed Page Tables:

Contiguity is Expensive!

O Finding large contiguous memory chunks is expensive in busy fragmented servers

"l Applications need to stall for millions

§ | of cycles for allocation! Linux server
< . 2GHz
£ | With higher fragmentation, the system | 0.7 FMFi
§ | even fails to allocate 64MB chunks!
O
Q
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Contiributions

O Four novel architectural techniques to provide Memory-Efficient Hashed Page Tables (ME-HPTSs)
O Reduced memory contiguity requirement by 92%

O Sped-up applications by 9% on average
O Allow large-memory applications to run at high performance on highly fragmented servers



Outline of this talk

O Problem: Contiguous Memory Requirements of Hashed Page Tables
O ME-HPTs: Memory-Efficient Hashed Page Tables

O ME-HPTs Design

O ME-HPTs Key Results

O Conclusion



Memory-Efficient Hashed Page Tables:

ME-HPTs Desigh Overview

O Memory-Efficient Hashed Page Tables (ME-HPTs): Four novel architectural techniques
O Directly minimizing contiguity requirements

O Logical-to-Physical (L2P) Table

O Dynamically Changing Chunk Size
O Indirectly minimizing contiguity requirements by minimizing memory consumption

O In-place Page Table Resizing

O Per-way Page Table Resizing



Memory Efficient Hashed Page Tables:
Logical-to-Physical (L2P) Table
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Logical-to-Physical (L2P) Table
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Memory Efficient Hashed Page Tables:

Logical-to-Physical (L2P) Table
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Memory Efficient Hashed Page Tables:

Dynamically Changing Chunk Sizes
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Memory Efficient Hashed Page Tables:

Dynamically Changing Chunk Sizes

Chunk

L2P

L2P is fixed in size!
If the application needs more
memory, it fails!

Chunk
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Memory Efficient Hashed Page Tables:

Designh Overview

O ME-HPTs: Four novel architectural techniques

O Directly minimizing contiguity requirements
O Logical-to-Physical (L2P) Table
O Dynamically Changing Chunk Size

O Indirectly minimizing contiguity requirements by minimizing memory consumption
O In-place Page Table Resizing

O Per-way Page Table Resizing



Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing
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In-Place Page Table Resizing
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Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

Dedllocate
old tablel




Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

Unftil the old table is deallocated, we
keep both tables in memory!
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Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

O Keep both tables in PPN
shared memory space

O Same hash function
for both tfables

O Onrehash, some
entries stay in the
same chunk, others

move to new chunks

1dH PIO

PPN

New HPT




Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing
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Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

New HPT

PPN

Always consume max(old, new) 8
instead of sum(old, new)! T
Old HPT , SN -
Save energy by moving only half of
the enfries! N

- (E=

Old + New Max(Old, New)




Memory Efficient Hashed Page Tables:
Per Way Page Table Resizing
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Per Way Page Table Resizing
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Memory Efficient Hashed Page Tables:

Per Way Page Table Resizing

Often memory underutilized!

Way 0 Way 1 Way 2
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Memory Efficient Hashed Page Tables:
Per Way Page Table Resizing




Memory Efficient Hashed Page Tables:
Per Way Page Table Resizing

Memory much better utilized!

Need to care: where to insert new
element and which way to upsize!

Way 0 Way 1 Way 2




Outline of this talk

O Page Table Organizations

O Hashed Page Tables Memory Requirements

O ME-HPTs: Memory-Efficient Hashed Page Tables
O ME-HPTs Design
O ME-HPTs Key Results

O Conclusion



Significant Memory Contiguity Savings
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Significant Memory Contiguity Savings
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ME-HPTs reduce contiguity of ECPTs 44X reduction
by up to 64X, with 92% average!
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Improved Application Performance
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Speedup
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Improved Application Performance

ME-HPTs outperform ECPTs by 3-18%
with an average of 9%
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O Four novel architectural techniques to provide Memory-Efficient Hashed Page Tables
O L2P Table
O Dynamically Changing Chunk Sizes

O In-Place Page Table Resizing
O Per-Way Page Table Resizing
O Reduced memory contiguity requirement by 92%
O Sped-up applications by 9% on average
O Allow large-memory applications to run at high performance on highly fragmented servers
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Virtual Memory Needs Memory-Efficient

Hashed Page Tables

O Virtual memory is essential technique in modern computing systems
O Memory virtualization

Virtual Physical

/ Memory Memory




Virtual Memory Needs Memory-Efficient

Hashed Page Tables

O Virtual memory is essential technique in modern computing systems
O Memory virtualization
O Process isolation

Physical Memory

Virtual Virtual
Memory Memory
A B

Virtual Virtual
Memory Memory
C D




Hashed Page Tables

B Loss of spatial locality

PGD-A PUD-A PMD-A PTE-A

Hashed

Page Table




Hashed Page Tables

B Page sharing and multiple page sizes not easy to support with global hashed table

PGD-A PUD-A PMD-A PTE-A

Hashed Physical
Page Table Memory

PGD-B PUD-B  PMD-B  PTE-B




Hashed Page Tables:

One Step Forward, Two Steps Back

B txtra space for hash tags

Protection  Physical Page

Hash Tag Bits Number

Hashed

Page Table




Hashed Page Tables:

Recent Advances Make Them Compelling

+ PTE Compaction and Clustering
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Hashed Page Tables:

Recent Advances Make Them Compelling

g Cuckoo Hashing for Collision Handling

Page Table Page Table Page Table
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Hashed Page Tables:

Large Contiguous Memory Chunks

O With radix page tables — unity of allocation is a 4KB page
O L1 and each L2, L3 and L4 page tables are allocated independently

L1- PGD L2- PUD L3- PMD L4- PTE




ME-HPTs:

Per Way Page Table Resizing
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ME-HPTs:

Per Way Page Table Resizing

Memory much better utilized!

Need to care: where 1o insert new
element and which way to upsize!

‘hunk

Chunk Chunk Chunk

Way 0 Way 1 Way 2



ME-HPTs Implementation:

L2P Table Entry Stealing

O L2P Table is per page size of each page table way and its size is fixed
O Applications rarely use all page tables extensively
O Some L2P tables will be less used than the others

O Steal L2P entries from one L2P table and give them to another L2P table



ME-HPTs Implementation:

L2P Table Entry Stealing
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ME-HPTs Key Results:

Improved Application Performance
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ME-HPTs Key Results:

Significant Memory Contiguity Savings
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ME-HPTs Key Results:

Significant Memory Contiguity Savings
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ME-HPTs Key Results:

Memory Consumption Reduction
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Fig. 10: Reduction in page table memory attained by ME-HPT
over the ECPT baseline. The number on top of each bar is the
absolute reduction in Mbytes.



ME-HPTs Key Results:

Number of L2P Table Entries Used per App

[ No THP 1 THP 192102 135195
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Fig. 14: Number of L2P table entries used per application.



ME-HPTs Other Use Cases

O Techniques applicable to various hash table designs beyond HPTs
O Scalable Secure Directories
O Directories as set-associative structures
O Efficient resizing required
O Memory Indexing
O Hash tables commonly used to implement memory indices of databases, file systems...
O Dynamic resizing key operation: in-place resizing useful
O Key-value Stores

O Dynamic structures whose size is unknown ahead of time



