Carnegie

ILLINOIS Mellon

AAAAAA RUATENIBE University

ME-HPTs:

Memory-Efficient Hashed Page Tables

HPCA 2023

Jovan Stojkovic, Namrata Mantri, Dimitrios Skarlatos*, Tianyin Xu, Josep Torrellas
University of lllinois at Urbana-Champaign

*Carnegie Mellon University

Virtual Memory and Page Tables

O Virtual memory is an essential technique in modern computing systems
O Memory virtualization
O Process isolation

O Virtual memory performance depends on the page table organization
O Radix page tables — slow and not scalable
O Hashed page tables — memory inefficient

Radix Page Tables:

Memory-Efficient Multi-Level Trees

L1- PGD L2- PUD L3- PMD L4- PTE

Radix Page Walk:

Expensive Pointer Chase

x86-64 Radix Page Tables

Virtual Address
47 ... 39 38...30 29 ... 21 20 ...12 11...0
Address A 9-bits 9-bits 9-bits 9-bits Page Offset

CR3

Hashed Page Tables

g Page walk requires a single memory access

PGD PUD PMD PIE

\ ’ Hashed
Page Table

Hashed Page Tables

e Hash collisions
PGD PUD PMD PTE-A

Hashed
Page Table

Hashed Page Tables:
Recent Advances Make Them Compelling

Elastic Cuckoo Page Tables (ECPTs)

F B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2

Hashed Page Tables:

Recent Advances Make Them Compelling

Insert E
Cuckoo Hashing
D
F B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2

Hashed Page Tables:
Recent Advances Make Them Compelling

Cuckoo Hashing

O\
«@@
D
F B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2

Hashed Page Tables:
Recent Advances Make Them Compelling

Cuckoo Hashing

D
B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2

Hashed Page Tables:

Recent Advances Make Them Compelling

Cuckoo Hashing

D
F E B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2

Hashed Page Tables:

Recent Advances Make Them Compelling

Insert F
Cuckoo Hashing
D
E B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2

Hashed Page Tables:
Recent Advances Make Them Compelling

Cuckoo Hashing

/%/
%
D
E B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2

Hashed Page Tables:
Recent Advances Make Them Compelling

Cuckoo Hashing

D
E
C
A
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2

Hashed Page Tables:

Recent Advances Make Them Compelling

Cuckoo Hashing

D
E B
C
A F G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2

Hashed Page Tables:

Recent Advances Make Them Compelling

Insert G
Cuckoo Hashing
D
E B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2

Hashed Page Tables:

Recent Advances Make Them Compelling

Insert G
Cuckoo Hashing
HT (G)

D
E B

C

A G

Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2

Hashed Page Tables:

Recent Advances Make Them Compelling

Cuckoo Hashing

D G
E B
C
A G
Hashed Hashed Hashed
Page Table Page Table Page Table

Way 0 Way 1 Way 2

Outline of this talk

O Problem: Contiguous Memory Requirements of Hashed Page Tables
O ME-HPTs: Memory-Efficient Hashed Page Tables

O ME-HPTs Design

O ME-HPTs Key Results

O Conclusion

Hashed Page Tables:

Large Contiguous Memory Chunks

O With hashed page tables — unity of allocation is one way of the page table

Hashed Hashed Hashed
Page Table Page Table Page Table
Way 0 Way 1 Way 2

Hashed Page Tables:

Large Contiguous Memory Chunks

O With hashed page tables — unity of allocation is one way of the page table

PAl With large memory applications, e
size of a way can be 10s-100s of MBs!

e.g., GUPS, SysBench 64MB per way

Hashed Page Tables:

Contiguity is Expensive!

O Finding large contfiguous memory chunks is expensive in busy fragmented servers

1000000
B 100000
O
9
»~ 10000
()
£ 1000
'—
[
2 100
O
O
1% 10
<

1

16

64

256 1024
Chunk Size (KB)

4096

16384

65536

Linux server
2GHz
0.7 FMFI

Hashed Page Tables:

Contiguity is Expensive!

O Finding large contiguous memory chunks is expensive in busy fragmented servers

"l Applications need to stall for millions

§ | of cycles for allocation! Linux server
< . 2GHz
£ | With higher fragmentation, the system | 0.7 FMFi
§ | even fails to allocate 64MB chunks!
O
Q
= o

1

4 16 64 256 1024 4096 16384 65536

Chunk Size (KB)

Contiributions

O Four novel architectural techniques to provide Memory-Efficient Hashed Page Tables (ME-HPTSs)
O Reduced memory contiguity requirement by 92%

O Sped-up applications by 9% on average
O Allow large-memory applications to run at high performance on highly fragmented servers

Outline of this talk

O Problem: Contiguous Memory Requirements of Hashed Page Tables
O ME-HPTs: Memory-Efficient Hashed Page Tables

O ME-HPTs Design

O ME-HPTs Key Results

O Conclusion

Memory-Efficient Hashed Page Tables:

ME-HPTs Desigh Overview

O Memory-Efficient Hashed Page Tables (ME-HPTs): Four novel architectural techniques
O Directly minimizing contiguity requirements

O Logical-to-Physical (L2P) Table

O Dynamically Changing Chunk Size
O Indirectly minimizing contiguity requirements by minimizing memory consumption

O In-place Page Table Resizing

O Per-way Page Table Resizing

Memory Efficient Hashed Page Tables:
Logical-to-Physical (L2P) Table

HPT Way

Memory Efficient Hashed Page Tables:

Logical-to-Physical (L2P) Table

o
o
/ %

M s — e
> +

‘ DIV-VPN 4

Memory Efficient Hashed Page Tables:

Logical-to-Physical (L2P) Table

DIV-VPN

{

L2P

MOD-VPN

+

1

L2P Base

Memory Efficient Hashed Page Tables:

Dynamically Changing Chunk Sizes

Chunk

L2P

Chunk

Chunk

Chunk

Memory Efficient Hashed Page Tables:

Dynamically Changing Chunk Sizes

Chunk

L2P

L2P is fixed in size!
If the application needs more
memory, it fails!

Chunk

Memory Efficient Hashed Page Tables:

Dynamically Changing Chunk Sizes

Chunk

L2P

Chunk

Chunk

Chunk

Memory Efficient Hashed Page Tables:

Dynamically Changing Chunk Sizes

L2P

Chunk

Chunk

Memory Efficient Hashed Page Tables:

Designh Overview

O ME-HPTs: Four novel architectural techniques

O Directly minimizing contiguity requirements
O Logical-to-Physical (L2P) Table
O Dynamically Changing Chunk Size

O Indirectly minimizing contiguity requirements by minimizing memory consumption
O In-place Page Table Resizing

O Per-way Page Table Resizing

Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

New HPT
Chunk
Old HPT
Chunk
Chunk Chunk
Chunk Chunk

Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

New HPT

Old HPT

N
T

Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

New HPT

Old HPT
PPN

N
T

Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

New HPT

Old HPT

Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

New HPT

Old HPT

11

Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

New HPT

Old HPT

1

Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

Dedllocate
old tablel

Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

Unftil the old table is deallocated, we
keep both tables in memory!

T

Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

=

O Keep both tables in
shared memory space

O Same hash function
for both tfables

O Onrehash, some
entries stay in the
same chunk, others
move to new chunks

1dH PIO

New HPT

Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

O Keep both tables in
shared memory space

O Same hash function
for both tfables

O Onrehash, some
entries stay in the
same chunk, others
move to new chunks

1dH PIO

New HPT

Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

O Keep both tables in PPN
shared memory space

O Same hash function
for both tfables

O Onrehash, some
entries stay in the
same chunk, others
move to new chunks

1dH PIO

New HPT

Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

O Keep both tables in PPN
shared memory space

O Same hash function
for both tfables

O Onrehash, some
entries stay in the
same chunk, others

move to new chunks ‘ \

1dH PIO

New HPT

Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

O Keep both tables in PPN
shared memory space

O Same hash function
for both tfables

O Onrehash, some
entries stay in the
same chunk, others

move to new chunks

1dH PIO

PPN

New HPT

Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

New HPT

PPN

1dH PIO

Old HPT N

|
H

Old + New Max(Old, New)

New HPT

e
H

Memory Efficient Hashed Page Tables:

In-Place Page Table Resizing

New HPT

PPN

Always consume max(old, new) 8
instead of sum(old, new)! T
Old HPT , SN -
Save energy by moving only half of
the enfries! N

- (E=

Old + New Max(Old, New)

Memory Efficient Hashed Page Tables:
Per Way Page Table Resizing

Way 0 Way 1 Way 2

Memory Efficient Hashed Page Tables:

Per Way Page Table Resizing

il
il

Way 0 Way 1 Way 2

Memory Efficient Hashed Page Tables:

Per Way Page Table Resizing

Often memory underutilized!

Way 0 Way 1 Way 2

.
-
e

Memory Efficient Hashed Page Tables:
Per Way Page Table Resizing

Memory Efficient Hashed Page Tables:
Per Way Page Table Resizing

Memory much better utilized!

Need to care: where to insert new
element and which way to upsize!

Way 0 Way 1 Way 2

Outline of this talk

O Page Table Organizations

O Hashed Page Tables Memory Requirements

O ME-HPTs: Memory-Efficient Hashed Page Tables
O ME-HPTs Design
O ME-HPTs Key Results

O Conclusion

Significant Memory Contiguity Savings

70 A4

|l 64X reduction |l 64X reduction

DFS GUPS MUMmer PR SSSP SysBench Average
¥ Elastic Cuckoo Page Tables ® Memory-Efficient Hashed Page Tables

6

o

5

o

4

o

3

o

2

o

1

Required Contfiguous Memory [MB]
(@]

(@)

Significant Memory Contiguity Savings

60 H

O
o

N
(@)

ME-HPTs reduce contiguity of ECPTs 44X reduction
by up to 64X, with 92% average!

BC BFS

GUPS MUMmer SSSP SysBench Average
B Elastic Cuckoo Page Tables B Memory-Efficient Hashed Page Tables

w
o

N
o

o

Required Contfiguous Memory [MB]

Improved Application Performance

1.6
1.4 9% speedup
1.2

o 1

)

3 o8

O

g 046
0.4
0.2
0

DFS GUPS MUMmer PR SSSP SysBench TC Average

B Radix B Elastic Cuckoo Page Tables B Memory-Efficient Hashed Page Tables

Speedup

1.6
1.4
1.2

J—

0.8
0.6
0.4
0.2

0

Improved Application Performance

ME-HPTs outperform ECPTs by 3-18%
with an average of 9%
TN TIN TAf TOAY TN OAR TOY TR
BC BFS

CC DC DFS GUPS MUMmer PR SSSP SysBench

9% speedup

TC Average

B Radix B Elastic Cuckoo Page Tables B Memory-Efficient Hashed Page Tables

O Four novel architectural techniques to provide Memory-Efficient Hashed Page Tables
O L2P Table
O Dynamically Changing Chunk Sizes

O In-Place Page Table Resizing
O Per-Way Page Table Resizing
O Reduced memory contiguity requirement by 92%
O Sped-up applications by 9% on average
O Allow large-memory applications to run at high performance on highly fragmented servers

Carnegie

ILLINOIS Mellon

AAAAAA RUATENIBE University

ME-HPTs:

Memory-Efficient Hashed Page Tables

HPCA 2023

Jovan Stojkovic, Namrata Mantri, Dimitrios Skarlatos*, Tianyin Xu, Josep Torrellas
University of lllinois at Urbana-Champaign

*Carnegie Mellon University

Backup Slides

Virtual Memory Needs Memory-Efficient

Hashed Page Tables

O Virtual memory is essential technique in modern computing systems
O Memory virtualization

Virtual Physical

/ Memory Memory

Virtual Memory Needs Memory-Efficient

Hashed Page Tables

O Virtual memory is essential technique in modern computing systems
O Memory virtualization
O Process isolation

Physical Memory

Virtual Virtual
Memory Memory
A B

Virtual Virtual
Memory Memory
C D

Hashed Page Tables

B Loss of spatial locality

PGD-A PUD-A PMD-A PTE-A

Hashed

Page Table

Hashed Page Tables

B Page sharing and multiple page sizes not easy to support with global hashed table

PGD-A PUD-A PMD-A PTE-A

Hashed Physical
Page Table Memory

PGD-B PUD-B PMD-B PTE-B

Hashed Page Tables:

One Step Forward, Two Steps Back

B txtra space for hash tags

Protection Physical Page

Hash Tag Bits Number

Hashed

Page Table

Hashed Page Tables:

Recent Advances Make Them Compelling

+ PTE Compaction and Clustering

pleipN[fefe] PTEO PTEl PTE2 PTE3 PTE4 PTES PTE6 PTE/

Hashed Page Tables:

Recent Advances Make Them Compelling

g Cuckoo Hashing for Collision Handling

Page Table Page Table Page Table
Way O Way 1 Way 2

Hashed Page Tables:

Large Contiguous Memory Chunks

O With radix page tables — unity of allocation is a 4KB page
O L1 and each L2, L3 and L4 page tables are allocated independently

L1- PGD L2- PUD L3- PMD L4- PTE

ME-HPTs:

Per Way Page Table Resizing

| | | | |
hunk
Often memory underutilized! hunk
hunk
Chunk Chunk Chunk

Way 0 Way 1 Way 2

ME-HPTs:

Per Way Page Table Resizing

Memory much better utilized!

Need to care: where 1o insert new
element and which way to upsize!

‘hunk

Chunk Chunk Chunk

Way 0 Way 1 Way 2

ME-HPTs Implementation:

L2P Table Entry Stealing

O L2P Table is per page size of each page table way and its size is fixed
O Applications rarely use all page tables extensively
O Some L2P tables will be less used than the others

O Steal L2P entries from one L2P table and give them to another L2P table

ME-HPTs Implementation:

L2P Table Entry Stealing

K S e W e R e
1 & 1 @] > @
o
. - S . . .
: @ : 30 _ 30
3 - 3 _ o [_I~ o 3] _
0 63 63 © 7 + o
: S 62 62 1 ®
) |7 . . .
: O
. w .
3] - 32 L = 32 | = 3
31 31 & 31 & 31
U
A
‘1 &]]]
0 _ 0 _ 0] 0 + 2

ME-HPTs Key Results:

Improved Application Performance

1.6
m= [

(With THP)
ME-HPTs outperform ECPTs by 1-11%
with the average of 6.4%
TN TN TN T Y I Iy
BC

BFS CC DC DFS GUPS MUMmer PR SSSP SysBench TC Average
B Radix MECPT ™ ME-HPT

1.4
1.2

Speedup
© o 9o
N o o —

0.

o N

ME-HPTs Key Results:

Significant Memory Contiguity Savings

64

_20

o0

=18

216

o) .

g 14 92% reduction

> " without THP

5

S0

O

€ 8

o)

O 6

O

O 4

3

¢ . |

~ 9]]] |] |] ~ | L™ |] |] ~ |] | -
GUPS MUMmer SSSP SysBench TC Average

mECPT WECPTTHP ®™ME-HPT ™ ME-HPT THP

ME-HPTs Key Results:

Significant Memory Contiguity Savings

64

_20

o0

=18

>

516

14

E 12

2

S0

O

*g 8

@)

1°) ¢ 89% reduction

£4 with THP

¢ . II

~ 9]]] |] |] ~ | L™ |] |]] | l
GUPS MUMmer SSSP SysBench Average

mECPT WECPTTHP ®™ME-HPT ™ ME-HPT THP

ME-HPTs Key Results:

Memory Consumption Reduction

S
>
—_
o
IS
9]
=
Q
©
|_
o
o
©
a
£
c
=
4
o
>
o]
Q
o

(=)}
o

[Per-way [In-place -zfer-wanyP B In-place THP

w
o

32 32 32 32 32 32 32 32 32 32

B
o

w
o

N
o

=
o

=]

BC BFS ccC DC DFS GUPS MUMmer PR SSSP SysBench TC Average

Fig. 10: Reduction in page table memory attained by ME-HPT
over the ECPT baseline. The number on top of each bar is the
absolute reduction in Mbytes.

ME-HPTs Key Results:

Number of L2P Table Entries Used per App

[No THP 1 THP 192102 135195

60

”’ 1

o |-
BC BFS CcC DC DFS GUPS MUMmer PR SSSP SysBench TC Average

Number of L2P entries

Fig. 14: Number of L2P table entries used per application.

ME-HPTs Other Use Cases

O Techniques applicable to various hash table designs beyond HPTs
O Scalable Secure Directories
O Directories as set-associative structures
O Efficient resizing required
O Memory Indexing
O Hash tables commonly used to implement memory indices of databases, file systems...
O Dynamic resizing key operation: in-place resizing useful
O Key-value Stores

O Dynamic structures whose size is unknown ahead of time

