UNIVERSITY OF

RN (o[- 2 PURDUE

AAAAAA - CHAMPAIGN

HardHarvest: Hardware-Supported Core
Harvesting for Microservices

ISCA ‘25

Jovan Stojkovic, Chunao Liu*, Muhammad Shahbaz*, Josep Torrellas

University of lllinois at Urbana-Champaign, *Purdue University

J. Stojkovic to start at UT Austin

Microservices

o Large monolithic applications decomposed iInto many small
INferdependent services

o Each service implements separate functionality

Text

SGraph
S
NGINX Compose H Cache Datapbase
Frontend Post (
Unigueld

Benefits of Microservices

o Scalabillity
o Design simplicity

o HW management

Microservices are Widely Used

Ire Actual Architecture

: simplified and actual scheme (source)

r’.' ‘ ’ | - '. .
‘ N R O A
’ ’ ')
'.'\- " - ...‘ “\!C ¢! -

-~ ‘c' -,

Structure of microservices at Amazon. Looks almost like a Death Star but is way more powerful. 4

Low Core Utilization with Microservices

O To accommodate the peak load, microservices typically overprovisioned

100 w—Service A
S\; = ——Service B
< et 3 large Microsoft services
O &0
.‘g . ~1M virtual cores
=
- 20
Q.
-

o
O

Low Core Utilization with Microservices

O To accommodate the peak load, microservices typically overprovisioned

O Requests often stalled on synchronous RPCs to read/write to/from remote
sforage, or to invoke other microservices

y\ y\
<>
XX

XX
XX XX
O O

Low Core Utilization with Microservices

\\\\ /
\‘ > :

O To accommodate the peak load, microservices typically overprovisioned

O Requests often stalled on synchronous RPCs to read/write to/from remote
stforage, or to invoke other microservices

O As aresult - cores are heavily underutilized

-~ AlibabaAvg

~—AlibabaMax

1.0 = ,
0.8 - 90% of services
w 0.6 " have maximum
o p e 1s
O 0.4 = core utilization
g'g / ' less than 407!
0.0 0.2 0.4 0.6 0.8

Core Utilization

Core Harvesting to the Rescue

O Collocate latency-critical microservices with compute-heavy batch apps
O Primary VMs

O Run latency-critical workloads

O Users request a number of cores

Core Harvesting to the Rescue

\\\ '
\// .

O Collocate latency-critical microservices with compute-heavy batch apps

O Primary VMs O Harvest VMs
O Run latency-crifical workloads O Run batch workloads in the backgrouna
O Users request a number of cores O Steal idle Primary VM's cores & refurn them

O PyTorch
Harvest VM

Primary VM

Core Harvesting to the Rescue

\\\\ /
\‘ > :

O Collocate latency-critical microservices with compute-heavy batch apps

O Primary VMs O Harvest VMs
O Run latency-crifical workloads O Run batch workloads in the backgrouna
O Users request a number of cores O Steal idle Primary VM's cores & refurn them

@ Primary VM @ Harvest VM

10

Core Harvesting to the Rescue

\\\ '
\// .

O Collocate latency-critical microservices with compute-heavy batch apps

O Primary VMs O Harvest VMs
O Run latency-crifical workloads O Run batch workloads in the backgrouna
O Users request a number of cores O Steal idle Primary VM's cores & refurn them

@ Primary VM

@ Harvest VM

Core Harvesting to the Rescue

\\\ '
\// .

O Collocate latency-critical microservices with compute-heavy batch apps

O Primary VMs O Harvest VMs
O Run latency-crifical workloads O Run batch workloads in the backgrouna
O Users request a number of cores O Steal idle Primary VM's cores & refurn them

@ Primary VM

@ Harvest VM

Core Harvesting to the Rescue

O Improved resource utilization

O Higher throughput for Harvest VMs

@ Primary VM

@ Harvest VM

Core Harvesting to the Rescue

O Improved resource utilization

O Higher throughput for Harvest VMs

O Software core harvesting = increase tail latency for Primary VMs!

@ Harvest VM

@ Primary VM

Problem #1: Expensive Core Re-Assignment

O Moving core from one VM to another Is expensive

O Need for two hypervisor calls (detach and attach)

O Cross-VM context switch

19

Problem #1: Expensive Core Re-Assignment

O Moving core from one VM to another Is expensive
O Need for two hypervisor calls (detach and attach)

O Cross-VM context switch
16

N

N

P99 Tall Latency [ms]
00,

- NO Harvesting 16

O

Problem #1: Expensive Core Re-Assignment

O Moving core from one VM to another Is expensive
O Need for two hypervisor calls (detach and attach)

O Cross-VM context switch
16

N

Core Reassignment

N

P99 Tall Latency [ms]
00,

NoO Harvesting 17

O

Problem #2: Expensive Micro-arch Flushing

O For security = different VMs should not observe any state left in caches/TLBs

O On a cross-VM context switch, need to flush and invalidate caches/TLBs

13

Problem #2: Expensive Micro-arch Flushing

O For security = different VMs should not observe any state left in caches/TLBs

O On a cross-VM context switch, need to flush and invalidate caches/TLBs

O~

N

Core Reassignment

N

P99 Tall Latency [ms]
00,

NoO Harvesting 19

O

Problem #2: Expensive Micro-arch Flushing

O For security = different VMs should not observe any state left in caches/TLBs

O On a cross-VM context switch, need to flush and invalidate caches/TLBs

O~

Cache/TLB Flushing

N

Core Reassignment

N

P99 Tall Latency [ms]
00,

NoO Harvesting 20

O

OHigh core ufllization
OHigh Harvest VM throughput
OLow Primary VM tall l[atency

2]

Contributions

O Characterize the opportunities of supporting hardware-based core
harvesting In microservice environments

O Propose HardHarvest

O The first architecture for hardware core harvesting

O Compared to state-of-the-art software core harvesting

O Higher core utilization: 1.5x
O Higher Harvest VM throughput: 1.8x

O Lower Primary VM tail latency: 6.0x

22

Opportunity: Small Services’ Working Set Sizes

O Microservices sensitive 1o cache misses, but folerate Cache/TLB downsizing

O Tall latency remains nearly unchanged even when LLC is reduced 1o Ifs Y4

23

Opportunity: Small Services’ Working Set Sizes

O Microservices sensitive 1o cache misses, but folerate Cache/TLB downsizing

O Tall latency remains nearly unchanged even when LLC is reduced 1o Ifs Y4

O Enables selective tflushing and partitioning

O Reserve cache/TLB space tor the Primary VM and preserve useful dato

24

HardHarvest: Hardware-Supported Core
Harvesting for Microservices

1. Software overheads of core reassigning high -
propose a hardware solution

2. Cache/TLB flushing expensive but needed for security -
partition caches/TLBs with smart replacement policy

25

Hardaware Schedvulers

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks

26

Hardaware Schedvulers

\\\ '
\// .

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks

Request Queue (RQ)

Périmdw VN] §ubdueufe PrinimwéVlv\?Z Sut§>que§3ue Prirfnoryé VM:ES Subquéue

27

Hardaware Schedvulers

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks

Request Queue (RQ)

23

Hardaware Schedvulers

\\\ '
\// .

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks
On-package HardHarvest Hardware Controller

29

Handling New Incoming Requests

—

~
~
\\
s

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks

Subgueue

ontrol
Netwaork O
-

30

Handling New Incoming Requests

—

~
~
\\
s

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks

Subgueue

N

ontrol
etwork
@

PCle 3]

Handling New Incoming Requests

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks

Subgueue

>
Netwark O

PCle 32

Handling New Incoming Requests

—

~
~
\\
s

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks

Subgueue

Core

Regular
NoC

L LC

PCle 33

Handling New Incoming Requests

—

~
~
\\
s

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks

Subgueue
ore
Regular
m o
o
onfrol
Netwaork O

PCle 34

Minimizing Core Reassignment Overheads

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks

Pimary VM Harvest VM .
 Request 5 E
' Queue D2 1D Request

Queue

|
Queue
Manager

Queue
Manager

Minimizing Core Reassignment Overheads

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks

Primary VM

 Request
, Queue

|
Queue
Manager

ID2 DT

Harvest VM

Request
Queue

e -

Minimizing Core Reassignment Overheads

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks

Primary VM D6

 Request
, Queue

|
Queue
Manager

Harvest VM

Request
Queue

e -

Minimizing Core Reassignment Overheads

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks

Primary VM

 Request
, Queue

|
Queue
Manager

ID2 D]

Harvest VM

Request
Queue

e -

D5 1D4 ID3

Minimizing Core Reassignment Overheads

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks

Primary VM

 Request
, Queue

ID2 D]

[Queue ’
Manager

Harvest VM

Request
Queue

e -

D5 1D4 ID3

Minimizing Core Reassignment Overheads

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks

Pimary VM~~~ Harvestvmw o

' Request - :

' Queue cqQuUes D5 D4 ID3
Queue ' '

|

| Queue
' | Manager
:
|
|
|

Queue
Manager

TLB/Cache Partitioning to Preserve State

N

O For security, statetul HW structures tflushed+inv on cross-VM context switch
O L1 (D+l) caches and TLBs, and L2 cache and TLB

O Microservices have relatively small instructions and data working sets

TLB/Cache

4]

TLB/Cache Partitioning to Preserve State

\\\ /
N

O For security, statetul HW structures tflushed+inv on cross-VM context switch
O L1 (D+l) caches and TLBs, and L2 cache and TLB

O Microservices have relatively small instructions and data working sets

Primary VM
TLB/Cache

47

TLB/Cache Partitioning to Preserve State

\\\ /
N

O For security, statetul HW structures tflushed+inv on cross-VM context switch
O L1 (D+l) caches and TLBs, and L2 cache and TLB

O Microservices have relatively small instructions and data working sets

I Primary VM

jz Non-Harvest Region
43
Harvest Region

TLB/Cache

TLB/Cache Partitioning to Preserve State

\\\ /
N

O For security, statetul HW structures tflushed+inv on cross-VM context switch
O L1 (D+l) caches and TLBs, and L2 cache and TLB

O Microservices have relatively small instructions and data working sets

Harvest VM
TLB/Cache

JZ 44
Harvest Region

TLB/Cache Partitioning to Preserve State

\\\ '
\

O For security, statetul HW structures tflushed+inv on cross-VM context switch
O L1 (D+l) caches and TLBs, and L2 cache and TLB

O Microservices have relatively small instructions and data working sets

Harvest VM
TLB/Cache

JZ 45
Harvest Region

TLB/Cache Partitioning to Preserve State

—————— =3 SssSsSss-ssTsTssTSsssTSssssTssTss"sS"s""T-T"s"""--""-"s"""="--"-""="""""T"S""""""""""S-""'"|""-"""""=">-"-""="""S"T""""""""""‘S""‘S-"""""""""""""--"""--"""sS"--">"""-">"'>=">=""-">">=">="""S"ssss"‘ssTs"""TSTSTSTS"STS"STSTSTSSsSsTSSTSS“STSTS“STSSS“STS®sTSSTSsSwsSwmSw™SwW
\\ ‘
\

O For security, statetul HW structures tflushed+inv on cross-VM context switch
O L1 (D+l) caches and TLBs, and L2 cache and TLB

O Microservices have relatively small instructions and data working sets

TLB/Cache

46

TLB/Cache Partitioning to Preserve State

\\\ /
N

O For security, statetul HW structures tflushed+inv on cross-VM context switch
O L1 (D+l) caches and TLBs, and L2 cache and TLB

O Microservices have relatively small instructions and data working sets

I Primary VM

jz Non-Harvest Region
47
Harvest Region

TLB/Cache

Smart Replacement Policy

O For performance, HardHarvest keeps iIn Non-Harvest region the data that is
Mmost likely 1o be reused In the future

O Shared pages: program code, libraries, read-only input dato

- shared across reqgquests

O Private pages: dllocated after a microservice request has arrived
- private per-invocation

O Shared pages more likely to be reused In the fufure

43

Smart Replacement Policy

JZ Non-Harvest Region
JZ Harvest Region 49

Smart Replacement Policy

f any slot empty
- Pick that slot

JZ Non-Harvest Region
JZ Harvest Region 50

Smart Replacement Policy

Addr Shared?
- Prioritize Non-Harvest

JZ Non-Harvest Region
JZ Harvest Region 3

Smart Replacement Policy

Addr Private©
- Prioritize Harvest

JZ Non-Harvest Region
JZ Harvest Region 55

\\
\ N

O Cycle-accurate tull-system simulafions: SST + QEMU
O DeathStarBench microservices with Alibaba’s invocation traces
O Systems evaluatead

O NoHarvest: conventional system where no VM pertorms core harvesting
O SoftHarvest (EuroSys’'21): software core harvesting

O HardHarvest: our proposal

93

HardHarvest Reduces Primary VMs' Tail Latency

N »~ O

O

P99 Tall Latency [ms]

O N A~ O O

NoHarvest SoftHarvest HardHarvest

HardHarvest Reduces Primary VMs' Tail Latency

P99 Tall Latency [ms]

ﬁ

O

N

O NN A~ O O

NoHarvest

State-of-the-art Our proposal

SoftHarvest

HardHarvest

HardHarvest Reduces Primary VMs' Tail Latency

/
//
'/
[

State-of-the-art Our proposal
16

P99 tail latency reduced 6x
compared to state-of-the-art!

Notarves M

P99 Tall Latency [ms]

HardHarvest

HardHarvest Increases Harvest VMs' Throughput

3.5
3
3
c 2.5
O)
3
e 2
|_
3 1.5
N
g]
O
< 0.5
0

NoHarvest SoftHarvest HardHarvest

HardHarvest Increases Harvest VMs' Throughput

3.5
3
3
c 2.5
O)
3
e 2
|_
3 1.5
N
<
O
< 0.5
0

NoHarvest

State-of-the-art Our proposal

SoftHarvest

HardHarvest

HardHarvest Increases Harvest VMs' Throughput

State-of-the-art Our proposal
3 -
2.5

Throughput increased 1.8x
compared to state-of-the-art!

O

Normalized Throughput

O
O

O

HardHarvest

HardHarvest Increases Core Ulilization

100
¢ 80
C
O
o 60
.'%l
5
O 40
O
O
) .
0

NoHarvest SoftHarvest HardHarvest

HardHarvest Increases Core Ulilization

State-of-the-art Our proposal

100
¢ 80
C
O
o 60
.'%l
5
O 40
O
O
) .
0

NoHarvest SoftHarvest HardHarvest

HardHarvest Increases Core Ulilization

State-of-the-art Our proposal

Core utilization increased 1.5x
compared to state-of-the-art!

O~
-,

40

Core Utilization [%]

20

0

HardHarvest

Conclusions

O Microservices beneficial, but have low core utilization
O How to design efficient core harvesting scheme for microservicese

O HardHarvest: the first architecture for in-hardware core harvesting

O é6x lower P99 tall latency of Primary VMs, 1.8x higher throughput of
Harvest VMs, and 1.5x higher core utilization

63

J[ILLINOIS [adatiinus

HardHarvest: Hardware-Supported Core
Harvesting for Microservices

ISCA ‘25

Jovan Stojkovic, Chunao Liu*, Muhammad Shahbaz*, Josep Torrellas

University of lllinois at Urbana-Champaign, *Purdue University

