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o Large monolithic applications decomposed into many small 
interdependent services
o Each service implements separate functionality 
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Microservices



o Scalability
o Design simplicity
o HW management
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Benefits of Microservices
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Microservices are Widely Used
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Low Core Utilization with Microservices

� To accommodate the peak load, microservices typically overprovisioned
� Requests often stalled on synchronous RPCs to read/write to/from remote 

storage, or to invoke other microservices
�As a result à cores are heavily underutilized

3 large Microsoft services
~1M virtual cores 
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Low Core Utilization with Microservices

� To accommodate the peak load, microservices typically overprovisioned
� Requests often stalled on synchronous RPCs to read/write to/from remote 

storage, or to invoke other microservices
�As a result à cores are heavily underutilized

90% of services 
have maximum 
core utilization 
less than 40%!
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Core Harvesting to the Rescue

�Collocate latency-critical microservices with compute-heavy batch apps
� Primary VMs

� Run latency-critical workloads

� Users request a number of cores

Primary VM Harvest VM

�Harvest VMs
� Run batch workloads in the background

� Steal idle Primary VM’s cores & return them 
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Core Harvesting to the Rescue

� Improved resource utilization
�Higher throughput for Harvest VMs

Primary VM Harvest VM
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Core Harvesting to the Rescue

� Improved resource utilization
�Higher throughput for Harvest VMs
� Software core harvesting à increase tail latency for Primary VMs!

Primary VM Harvest VM
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Problem #1: Expensive Core Re-Assignment

�Moving core from one VM to another is expensive
�Need for two hypervisor calls (detach and attach)

�Cross-VM context switch
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Problem #2: Expensive Micro-arch Flushing

� For security à different VMs should not observe any state left in caches/TLBs
�On a cross-VM context switch, need to flush and invalidate caches/TLBs
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Problem #2: Expensive Micro-arch Flushing

� For security à different VMs should not observe any state left in caches/TLBs
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�High core utilization
�High Harvest VM throughput
�Low Primary VM tail latency
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Goals



�Characterize the opportunities of supporting hardware-based core 
harvesting in microservice environments

� Propose HardHarvest
�The first architecture for hardware core harvesting

�Compared to state-of-the-art software core harvesting
�Higher core utilization: 1.5x

�Higher Harvest VM throughput: 1.8x

�Lower Primary VM tail latency: 6.0x
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Contributions
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Opportunity: Small Services’ Working Set Sizes

�Microservices sensitive to cache misses, but tolerate Cache/TLB downsizing
�Tail latency remains nearly unchanged even when LLC is reduced to its ¼

� Enables selective flushing and partitioning
�Reserving cache/TLB space for the Primary VM and preserve there useful data
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HardHarvest: Hardware-Supported Core 
Harvesting for Microservices

1. Software overheads of core reassigning high à
propose a hardware solution

2. Cache/TLB flushing expensive but needed for security à
partition caches/TLBs with smart replacement policy
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Hardware Schedulers

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

Cores

Primary
VM1

Primary
VM2

Primary
VM3
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Hardware Schedulers

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

Cores

Request Queue (RQ)

Queue 
Manager

VM 
State 
Regs

Queue 
Manager

Queue 
Manager

On-package HardHarvest Hardware Controller

Primary VM1 Subqueue Primary VM2 Subqueue Primary VM3 Subqueue

Primary
VM1

Primary
VM2

Primary
VM3



30

Handling New Incoming Requests

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks
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Handling New Incoming Requests
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Minimizing Core Reassignment Overheads

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks
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Minimizing Core Reassignment Overheads
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TLB/Cache Partitioning to Preserve State

� For security, stateful HW structures flushed+inv on cross-VM context switch
� L1 (D+I) caches and TLBs, and L2 cache and TLB

� Microservices have relatively small instructions and data working sets

TLB/Cache
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Smart Replacement Policy

� For performance, HardHarvest keeps in Non-Harvest region the data that is 
most likely to be reused in the future

� Shared pages: program code, libraries, read-only input data 

à shared across requests

� Private pages: allocated after a microservice request has arrived
à private per-invocation

� Shared pages more likely to be reused in the future
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Smart Replacement Policy

Non-Harvest Region

Addr

Harvest Region
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Smart Replacement Policy

Non-Harvest Region

Addr

Harvest Region

If any slot empty
à Pick that slot
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Smart Replacement Policy

Non-Harvest Region

Addr

Harvest Region

Addr Shared?
à Prioritize Non-Harvest
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Smart Replacement Policy

Non-Harvest Region

Addr

Harvest Region

Addr Private?
à Prioritize Harvest



�Cycle-accurate full-system simulations: SST + QEMU
�DeathStarBench microservices with Alibaba’s invocation traces
� Systems evaluated

�NoHarvest: conventional system where no VM performs core harvesting

�SoftHarvest (EuroSys’21): software core harvesting

�HardHarvest: our proposal

53

Evaluation Methodology
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HardHarvest Increases Harvest VMs’ Throughput
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�Microservices beneficial, but have low core utilization
�How to design efficient core harvesting scheme for microservices?
�HardHarvest: the first architecture for in-hardware core harvesting

�6x lower P99 tail latency of Primary VMs, 1.8x higher throughput of 
Harvest VMs, and 1.5x higher core utilization

63

Conclusions
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