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Microservices

o Large monolithic applications decomposed iInto many small
INferdependent services

o Each service implements separate functionality
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Benefits of Microservices

o Scalabillity
o Design simplicity

o HW management



Microservices are Widely Used

Ire Actual Architecture

: simplified and actual scheme (source)
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Structure of microservices at Amazon. Looks almost like a Death Star but is way more powerful. 4



Low Core Utilization with Microservices

O To accommodate the peak load, microservices typically overprovisioned

100 w—Service A
S\; = ——Service B
< et 3 large Microsoft services
O &0
.‘g . ~1M virtual cores
=
- 20
Q.
-

o
O



Low Core Utilization with Microservices

O To accommodate the peak load, microservices typically overprovisioned

O Requests often stalled on synchronous RPCs to read/write to/from remote
sforage, or to invoke other microservices
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Low Core Utilization with Microservices
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O To accommodate the peak load, microservices typically overprovisioned

O Requests often stalled on synchronous RPCs to read/write to/from remote
stforage, or to invoke other microservices

O As aresult - cores are heavily underutilized
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Core Harvesting to the Rescue

O Collocate latency-critical microservices with compute-heavy batch apps
O Primary VMs

O Run latency-critical workloads

O Users request a number of cores




Core Harvesting to the Rescue
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O Collocate latency-critical microservices with compute-heavy batch apps

O Primary VMs O Harvest VMs
O Run latency-crifical workloads O Run batch workloads in the backgrouna
O Users request a number of cores O Steal idle Primary VM's cores & refurn them

O PyTorch
Harvest VM

Primary VM
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Core Harvesting to the Rescue

O Improved resource utilization

O Higher throughput for Harvest VMs
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Core Harvesting to the Rescue

O Improved resource utilization

O Higher throughput for Harvest VMs

O Software core harvesting = increase tail latency for Primary VMs!

@ Harvest VM

@ Primary VM




Problem #1: Expensive Core Re-Assignment

O Moving core from one VM to another Is expensive

O Need for two hypervisor calls (detach and attach)

O Cross-VM context switch
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Problem #2: Expensive Micro-arch Flushing

O For security = different VMs should not observe any state left in caches/TLBs

O On a cross-VM context switch, need to flush and invalidate caches/TLBs
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Problem #2: Expensive Micro-arch Flushing

O For security = different VMs should not observe any state left in caches/TLBs

O On a cross-VM context switch, need to flush and invalidate caches/TLBs
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Contributions

O Characterize the opportunities of supporting hardware-based core
harvesting In microservice environments

O Propose HardHarvest

O The first architecture for hardware core harvesting

O Compared to state-of-the-art software core harvesting

O Higher core utilization: 1.5x
O Higher Harvest VM throughput: 1.8x

O Lower Primary VM tail latency: 6.0x
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Opportunity: Small Services’ Working Set Sizes

O Microservices sensitive 1o cache misses, but folerate Cache/TLB downsizing

O Tall latency remains nearly unchanged even when LLC is reduced 1o Ifs Y4
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Opportunity: Small Services’ Working Set Sizes

O Microservices sensitive 1o cache misses, but folerate Cache/TLB downsizing

O Tall latency remains nearly unchanged even when LLC is reduced 1o Ifs Y4

O Enables selective tflushing and partitioning

O Reserve cache/TLB space tor the Primary VM and preserve useful dato
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HardHarvest: Hardware-Supported Core
Harvesting for Microservices

1. Software overheads of core reassigning high -
propose a hardware solution

2. Cache/TLB flushing expensive but needed for security -
partition caches/TLBs with smart replacement policy

25



Hardaware Schedvulers

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks
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Hardaware Schedvulers
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O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks

Request Queue (RQ)
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Hardaware Schedvulers
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O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks
On-package HardHarvest Hardware Controller
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Handling New Incoming Requests
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O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks
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Handling New Incoming Requests
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O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks
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Minimizing Core Reassignment Overheads

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks
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Minimizing Core Reassignment Overheads

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks
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Minimizing Core Reassignment Overheads

O Hardware schedulers to schedule VM's Incoming requests

O Avold hypervisor calls and software locks
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TLB/Cache Partitioning to Preserve State

N

O For security, statetul HW structures tflushed+inv on cross-VM context switch
O L1 (D+l) caches and TLBs, and L2 cache and TLB

O Microservices have relatively small instructions and data working sets

TLB/Cache
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TLB/Cache Partitioning to Preserve State
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Smart Replacement Policy

O For performance, HardHarvest keeps iIn Non-Harvest region the data that is
Mmost likely 1o be reused In the future

O Shared pages: program code, libraries, read-only input dato

- shared across reqgquests

O Private pages: dllocated after a microservice request has arrived
- private per-invocation

O Shared pages more likely to be reused In the fufure
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Smart Replacement Policy
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Smart Replacement Policy

f any slot empty
- Pick that slot

JZ Non-Harvest Region
JZ Harvest Region 50



Smart Replacement Policy

Addr Shared?
- Prioritize Non-Harvest

JZ Non-Harvest Region
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Smart Replacement Policy

Addr Private©
- Prioritize Harvest
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O Cycle-accurate tull-system simulafions: SST + QEMU
O DeathStarBench microservices with Alibaba’s invocation traces
O Systems evaluatead

O NoHarvest: conventional system where no VM pertorms core harvesting
O SoftHarvest (EuroSys’'21): software core harvesting

O HardHarvest: our proposal
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HardHarvest Reduces Primary VMs' Tail Latency
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HardHarvest Reduces Primary VMs' Tail Latency
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State-of-the-art Our proposal
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P99 tail latency reduced 6x
compared to state-of-the-art!
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HardHarvest Increases Harvest VMs' Throughput
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HardHarvest Increases Harvest VMs' Throughput

State-of-the-art Our proposal
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Throughput increased 1.8x
compared to state-of-the-art!
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HardHarvest Increases Core Ulilization
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HardHarvest Increases Core Ulilization

State-of-the-art Our proposal

Core utilization increased 1.5x
compared to state-of-the-art!
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Conclusions

O Microservices beneficial, but have low core utilization
O How to design efficient core harvesting scheme for microservicese

O HardHarvest: the first architecture for in-hardware core harvesting

O é6x lower P99 tall latency of Primary VMs, 1.8x higher throughput of
Harvest VMs, and 1.5x higher core utilization
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