
HardHarvest: Hardware-Supported Core 
Harvesting for Microservices

ISCA ‘25

Jovan Stojkovic, Chunao Liu*, Muhammad Shahbaz*, Josep Torrellas

University of Illinois at Urbana-Champaign, *Purdue University

J. Stojkovic to start at UT Austin



NGINX 
Frontend

User

Text

HomeT

Compose 
Post

UsrMnt

Cache

UrlShort

SGraph

UniqueId

Database

o Large monolithic applications decomposed into many small 
interdependent services
o Each service implements separate functionality 

2

Microservices



o Scalability
o Design simplicity
o HW management

3

Benefits of Microservices



4

Microservices are Widely Used



5

Low Core Utilization with Microservices

� To accommodate the peak load, microservices typically overprovisioned
� Requests often stalled on synchronous RPCs to read/write to/from remote 

storage, or to invoke other microservices
�As a result à cores are heavily underutilized

3 large Microsoft services
~1M virtual cores 



6

Low Core Utilization with Microservices

� To accommodate the peak load, microservices typically overprovisioned
� Requests often stalled on synchronous RPCs to read/write to/from remote 

storage, or to invoke other microservices
�As a result à cores are heavily underutilized

RPC RPC



7

Low Core Utilization with Microservices

� To accommodate the peak load, microservices typically overprovisioned
� Requests often stalled on synchronous RPCs to read/write to/from remote 

storage, or to invoke other microservices
�As a result à cores are heavily underutilized

90% of services 
have maximum 
core utilization 
less than 40%!



8

Core Harvesting to the Rescue

�Collocate latency-critical microservices with compute-heavy batch apps
� Primary VMs

� Run latency-critical workloads

� Users request a number of cores

Primary VM Harvest VM

�Harvest VMs
� Run batch workloads in the background

� Steal idle Primary VM’s cores & return them 

8



9

Core Harvesting to the Rescue

�Collocate latency-critical microservices with compute-heavy batch apps
� Primary VMs

� Run latency-critical workloads

� Users request a number of cores

Primary VM Harvest VM

�Harvest VMs
� Run batch workloads in the background

� Steal idle Primary VM’s cores & return them 



10

Core Harvesting to the Rescue

Primary VM Harvest VM

�Collocate latency-critical microservices with compute-heavy batch apps
� Primary VMs

� Run latency-critical workloads

� Users request a number of cores

�Harvest VMs
� Run batch workloads in the background

� Steal idle Primary VM’s cores & return them 



11

Core Harvesting to the Rescue

Primary VM Harvest VM

�Collocate latency-critical microservices with compute-heavy batch apps
� Primary VMs

� Run latency-critical workloads

� Users request a number of cores

�Harvest VMs
� Run batch workloads in the background

� Steal idle Primary VM’s cores & return them 



12

Core Harvesting to the Rescue

Primary VM Harvest VM

�Collocate latency-critical microservices with compute-heavy batch apps
� Primary VMs

� Run latency-critical workloads

� Users request a number of cores

�Harvest VMs
� Run batch workloads in the background

� Steal idle Primary VM’s cores & return them 



13

Core Harvesting to the Rescue

� Improved resource utilization
�Higher throughput for Harvest VMs

Primary VM Harvest VM



14

Core Harvesting to the Rescue

� Improved resource utilization
�Higher throughput for Harvest VMs
� Software core harvesting à increase tail latency for Primary VMs!

Primary VM Harvest VM



15

Problem #1: Expensive Core Re-Assignment

�Moving core from one VM to another is expensive
�Need for two hypervisor calls (detach and attach)

�Cross-VM context switch



16

Problem #1: Expensive Core Re-Assignment

�Moving core from one VM to another is expensive
�Need for two hypervisor calls (detach and attach)

�Cross-VM context switch

0

4

8

12

16

P9
9 

Ta
il 

La
te

nc
y 

[m
s]

No Harvesting



17

Problem #1: Expensive Core Re-Assignment

�Moving core from one VM to another is expensive
�Need for two hypervisor calls (detach and attach)

�Cross-VM context switch

0

4

8

12

16

P9
9 

Ta
il 

La
te

nc
y 

[m
s]

No Harvesting

Core Reassignment



18

Problem #2: Expensive Micro-arch Flushing

� For security à different VMs should not observe any state left in caches/TLBs
�On a cross-VM context switch, need to flush and invalidate caches/TLBs



19

Problem #2: Expensive Micro-arch Flushing

� For security à different VMs should not observe any state left in caches/TLBs
�On a cross-VM context switch, need to flush and invalidate caches/TLBs

0

4

8

12

16

P9
9 

Ta
il 

La
te

nc
y 

[m
s]

No Harvesting

Core Reassignment



20

Problem #2: Expensive Micro-arch Flushing

� For security à different VMs should not observe any state left in caches/TLBs
�On a cross-VM context switch, need to flush and invalidate caches/TLBs

0

4

8

12

16

P9
9 

Ta
il 

La
te

nc
y 

[m
s]

No Harvesting

Core Reassignment

Cache/TLB Flushing



�High core utilization
�High Harvest VM throughput
�Low Primary VM tail latency

21

Goals



�Characterize the opportunities of supporting hardware-based core 
harvesting in microservice environments

� Propose HardHarvest
�The first architecture for hardware core harvesting

�Compared to state-of-the-art software core harvesting
�Higher core utilization: 1.5x

�Higher Harvest VM throughput: 1.8x

�Lower Primary VM tail latency: 6.0x

22

Contributions



23

Opportunity: Small Services’ Working Set Sizes

�Microservices sensitive to cache misses, but tolerate Cache/TLB downsizing
�Tail latency remains nearly unchanged even when LLC is reduced to its ¼

� Enables selective flushing and partitioning
�Reserving cache/TLB space for the Primary VM and preserve there useful data



24

Opportunity: Small Services’ Working Set Sizes

�Microservices sensitive to cache misses, but tolerate Cache/TLB downsizing
�Tail latency remains nearly unchanged even when LLC is reduced to its ¼

� Enables selective flushing and partitioning
�Reserve cache/TLB space for the Primary VM and preserve useful data



25

HardHarvest: Hardware-Supported Core 
Harvesting for Microservices

1. Software overheads of core reassigning high à
propose a hardware solution

2. Cache/TLB flushing expensive but needed for security à
partition caches/TLBs with smart replacement policy



26

Hardware Schedulers

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

Cores

Primary
VM1

Primary
VM2

Primary
VM3



27

Hardware Schedulers

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

Cores

Primary VM1 Subqueue Primary VM2 Subqueue

Request Queue (RQ)

Primary VM3 Subqueue

Primary
VM1

Primary
VM2

Primary
VM3



28

Hardware Schedulers

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

Cores

Request Queue (RQ)

Queue 
Manager

VM 
State 
Regs

Queue 
Manager

Queue 
Manager

Primary VM1 Subqueue Primary VM2 Subqueue Primary VM3 Subqueue

Primary
VM1

Primary
VM2

Primary
VM3



29

Hardware Schedulers

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

Cores

Request Queue (RQ)

Queue 
Manager

VM 
State 
Regs

Queue 
Manager

Queue 
Manager

On-package HardHarvest Hardware Controller

Primary VM1 Subqueue Primary VM2 Subqueue Primary VM3 Subqueue

Primary
VM1

Primary
VM2

Primary
VM3



30

Handling New Incoming Requests

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

NIC

LLC

Core

QM QM

Subqueue

PCIe

Regular
NoC

Control 
Network



31

Handling New Incoming Requests

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

NIC

LLC

Core

QM QM

Subqueue

PCIe
1

Regular
NoC

Control 
Network



32

Handling New Incoming Requests

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

NIC

LLC

Core

QM QM

Subqueue

PCIe

2

Regular
NoC

Control 
Network



33

Handling New Incoming Requests

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

NIC

LLC

Core

QM QM

Subqueue

PCIe

3
Regular

NoC

Control 
Network



34

Handling New Incoming Requests

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

NIC

LLC

Core

QM QM

Subqueue

PCIe

4
Regular

NoC

Control 
Network



35

Minimizing Core Reassignment Overheads

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

ID2 ID1
ID5 ID4 ID3

Idle core

Harvest VM

Request 
Queue

Queue 
Manager

Request 
Queue

Queue 
Manager

Primary VM
Run



36

Minimizing Core Reassignment Overheads

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

ID2 ID1
ID5 ID4 ID3

Stolen core

Harvest VM

Request 
Queue

Queue 
Manager

Request 
Queue

Queue 
Manager

Primary VM
Run



37

Minimizing Core Reassignment Overheads

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

ID2 ID1
ID5 ID4 ID3

Stolen core

Harvest VM

Request 
Queue

Queue 
Manager

Request 
Queue

Queue 
Manager

Primary VM ID6

Run



38

Minimizing Core Reassignment Overheads

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

ID2 ID1
ID5 ID4 ID3

Harvest VM

Request 
Queue

Queue 
Manager

Request 
Queue

Queue 
Manager

Primary VM

ID6
Run

Stolen core



39

Minimizing Core Reassignment Overheads

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

ID2 ID1
ID5 ID4 ID3

Preempt!

Harvest VM

Request 
Queue

Queue 
Manager

Request 
Queue

Queue 
Manager

Primary VM

ID6
Run



40

Minimizing Core Reassignment Overheads

�Hardware schedulers to schedule VM’s incoming requests
�Avoid hypervisor calls and software locks

ID2 ID1
ID5 ID4 ID3

Harvest VM

Request 
Queue

Queue 
Manager

Request 
Queue

Queue 
Manager

Primary VM

ID6
Run



41

TLB/Cache Partitioning to Preserve State

� For security, stateful HW structures flushed+inv on cross-VM context switch
� L1 (D+I) caches and TLBs, and L2 cache and TLB

� Microservices have relatively small instructions and data working sets

TLB/Cache



42

TLB/Cache Partitioning to Preserve State

� For security, stateful HW structures flushed+inv on cross-VM context switch
� L1 (D+I) caches and TLBs, and L2 cache and TLB

� Microservices have relatively small instructions and data working sets

TLB/Cache
Primary VM



43

TLB/Cache Partitioning to Preserve State

� For security, stateful HW structures flushed+inv on cross-VM context switch
� L1 (D+I) caches and TLBs, and L2 cache and TLB

� Microservices have relatively small instructions and data working sets

TLB/Cache
Primary VM

Non-Harvest Region

Harvest Region



44

TLB/Cache Partitioning to Preserve State

� For security, stateful HW structures flushed+inv on cross-VM context switch
� L1 (D+I) caches and TLBs, and L2 cache and TLB

� Microservices have relatively small instructions and data working sets

TLB/Cache
Harvest VM

Harvest Region



45

TLB/Cache Partitioning to Preserve State

� For security, stateful HW structures flushed+inv on cross-VM context switch
� L1 (D+I) caches and TLBs, and L2 cache and TLB

� Microservices have relatively small instructions and data working sets

TLB/Cache
Harvest VM

Harvest Region



46

TLB/Cache Partitioning to Preserve State

� For security, stateful HW structures flushed+inv on cross-VM context switch
� L1 (D+I) caches and TLBs, and L2 cache and TLB

� Microservices have relatively small instructions and data working sets

TLB/Cache
Primary VM

Non-Harvest Region



47

TLB/Cache Partitioning to Preserve State

� For security, stateful HW structures flushed+inv on cross-VM context switch
� L1 (D+I) caches and TLBs, and L2 cache and TLB

� Microservices have relatively small instructions and data working sets

TLB/Cache
Primary VM

Harvest Region

Non-Harvest Region



48

Smart Replacement Policy

� For performance, HardHarvest keeps in Non-Harvest region the data that is 
most likely to be reused in the future

� Shared pages: program code, libraries, read-only input data 

à shared across requests

� Private pages: allocated after a microservice request has arrived
à private per-invocation

� Shared pages more likely to be reused in the future



49

Smart Replacement Policy

Non-Harvest Region

Addr

Harvest Region



50

Smart Replacement Policy

Non-Harvest Region

Addr

Harvest Region

If any slot empty
à Pick that slot



51

Smart Replacement Policy

Non-Harvest Region

Addr

Harvest Region

Addr Shared?
à Prioritize Non-Harvest



52

Smart Replacement Policy

Non-Harvest Region

Addr

Harvest Region

Addr Private?
à Prioritize Harvest



�Cycle-accurate full-system simulations: SST + QEMU
�DeathStarBench microservices with Alibaba’s invocation traces
� Systems evaluated

�NoHarvest: conventional system where no VM performs core harvesting

�SoftHarvest (EuroSys’21): software core harvesting

�HardHarvest: our proposal

53

Evaluation Methodology



HardHarvest Reduces Primary VMs’ Tail Latency

0

2

4

6

8

10

12

14

16

NoHarvest SoftHarvest HardHarvest

P9
9 

Ta
il 

La
te

nc
y 

[m
s]



HardHarvest Reduces Primary VMs’ Tail Latency

0

2

4

6

8

10

12

14

16

NoHarvest SoftHarvest HardHarvest

P9
9 

Ta
il 

La
te

nc
y 

[m
s]

State-of-the-art Our proposal



HardHarvest Reduces Primary VMs’ Tail Latency

0

2

4

6

8

10

12

14

16

NoHarvest SoftHarvest HardHarvest

P9
9 

Ta
il 

La
te

nc
y 

[m
s]

State-of-the-art Our proposal

P99 tail latency reduced 6x 
compared to state-of-the-art!



HardHarvest Increases Harvest VMs’ Throughput

0

0.5

1

1.5

2

2.5

3

3.5

NoHarvest SoftHarvest HardHarvest

N
or

m
al

ize
d 

Th
ro

ug
hp

ut



HardHarvest Increases Harvest VMs’ Throughput

0

0.5

1

1.5

2

2.5

3

3.5

NoHarvest SoftHarvest HardHarvest

N
or

m
al

ize
d 

Th
ro

ug
hp

ut

State-of-the-art Our proposal



HardHarvest Increases Harvest VMs’ Throughput

0

0.5

1

1.5

2

2.5

3

3.5

NoHarvest SoftHarvest HardHarvest

N
or

m
al

ize
d 

Th
ro

ug
hp

ut

State-of-the-art Our proposal

Throughput increased 1.8x 
compared to state-of-the-art!



HardHarvest Increases Core Utilization

0

20

40

60

80

100

NoHarvest SoftHarvest HardHarvest

C
or

e 
Ut

iliz
at

io
n 

[%
]



HardHarvest Increases Core Utilization

0

20

40

60

80

100

NoHarvest SoftHarvest HardHarvest

C
or

e 
Ut

iliz
at

io
n 

[%
]

State-of-the-art Our proposal



HardHarvest Increases Core Utilization

0

20

40

60

80

100

NoHarvest SoftHarvest HardHarvest

C
or

e 
Ut

iliz
at

io
n 

[%
]

State-of-the-art Our proposal

Core utilization increased 1.5x 
compared to state-of-the-art!



�Microservices beneficial, but have low core utilization
�How to design efficient core harvesting scheme for microservices?
�HardHarvest: the first architecture for in-hardware core harvesting

�6x lower P99 tail latency of Primary VMs, 1.8x higher throughput of 
Harvest VMs, and 1.5x higher core utilization

63

Conclusions



HardHarvest: Hardware-Supported Core 
Harvesting for Microservices

ISCA ‘25

Jovan Stojkovic, Chunao Liu*, Muhammad Shahbaz*, Josep Torrellas

University of Illinois at Urbana-Champaign, *Purdue University


