
EMT: An OS Framework for New Memory Translation Architectures
Siyuan Chai, Jiyuan Zhang*, Jongyul Kim, Alan Wang, Fan Chung, Jovan Stojkovic,

Weiwei Jia†, Dimitrios Skarlatos‡, Josep Torrellas, Tianyin Xu

University of Illinois Urbana-Champaign †University of Rhode Island ‡Carnegie Mellon University

Abstract
With terabyte-scale memory capacity and memory-intensive
workloads, memory translation has become a major perfor-
mance bottleneck. Many novel hardware schemes are devel-
oped to speed up memory translation, but few are experi-
mented with commodity OSes. A main reason is that memory
management in major OSes, like Linux, does not have the
extensibility to empower emerging hardware schemes.

We develop EMT, a pragmatic framework atop Linux to em-
power different hardware schemes of memory translation such
as radix tree and hash table. EMT provides an architecture-
neutral interface that 1) supports diverse memory translation
architectures, 2) enables hardware-specific optimizations, 3)
accommodates modern hardware and OS complexity, and 4)
has negligible overhead over hardwired implementations. We
port Linux’s memory management onto EMT and show that
EMT enables extensibility without sacrificing performance.
We use EMT to implement OS support for ECPT and FPT,
two recent experimental translation schemes for fast transla-
tion; EMT enables us to understand the OS perspective of
these architectures and further optimize their designs.

1 Introduction
“It so happens that a tree format is the only sane
format...” [105] —Linus Torvalds, 2002

Virtual memory translation has become a major perfor-
mance bottleneck of emerging memory-intensive comput-
ing [34, 56, 63, 69, 77, 87, 98]. With unprecedented growth of
memory capacity, driven by terabyte-scale memory [31, 52]
and memory expanders like CXL [71, 96], TLBs cannot scale
in the same way as memory. Moreover, emerging workloads
like machine learning, graph processing, and bioinformatics
have irregular memory access patterns with weak locality,
making TLBs and other MMU caches less efficient. As a
result, TLB misses are inevitably increasing, resulting in ex-
pensive address translation across the memory system.

However, today’s translation architectures were designed at
a time of scarce memory, and optimize space-efficiency over
performance. The de facto schemes organize translations into
a multi-level radix tree [11, 17, 19]; upon a TLB miss, the
MMU must sequentially walk the tree, resulting in multiple

*Co-lead of the EMT project

memory accesses. The x86-64 architecture uses a four-level
tree, with a fifth level added in recent hardware [3, 110]. In
virtualized environments, translation overhead is magnified
by nested translation [39, 79] which takes a two-dimensional
walk over the guest and host page tables, resulting in up to 24
sequential memory accesses on four-level page tables.

To address this pressing problem, many new hardware ar-
chitectures for MMUs have been developed to realize fast
translation for today’s terabyte-scale, heterogeneous memory.
For example, hashing-based translation schemes are revis-
ited [35, 53, 68, 98–100, 109], as hashing is inherently more
scalable than walking a tree [109]; a recent hashing scheme,
based on Elastic Cuckoo Page Table (ECPT), is reported to
reduce translation overhead significantly by enabling paral-
lel lookups of page table entries [98, 100]. New translation
schemes using flattened or linear page tables [65, 87] have
also been developed. In addition, recent studies advocate for
hybrid translation architectures that use different schemes
collectively or selectively [26, 27, 49, 57, 63, 111].

Unfortunately, OS support for hardware innovations falls
short; few aforementioned new hardware schemes were ex-
perimented with commodity OSes like Linux. Instead, evalu-
ations of experimental architectures mostly use performance
models to estimate OS overhead [28, 65, 77, 95, 109, 111], or
trace-driven simulation with traces collected by running work-
loads on unmodified Linux [77, 95, 98, 109]. The assumption
is that OS overhead on different translation architectures is
constant. However, our paper shows that translation architec-
tures could have significant impacts on OS performance.

In fact, the difficulties of OS support has affected hardware
research—disruptive hardware designs are often considered
“undesirable” and lose to incremental approaches (see [77]).
Our discussions with hardware vendors tell us that the lack of
commodity OS support and evaluation is a major barrier to
assessing and adopting new hardware translation schemes.

The unsatisfactory OS effort is largely due to memory man-
agement systems in commodity OSes not having the exten-
sibility for emerging translation architectures. For example,
Linux assumes a radix-tree based page table structure and
lacks extensibility to support hardware schemes that cannot fit
in its tree definition. As a result, supporting a new architecture
often requires heavy modifications of memory management
code in architecture-independent modules. Essentially, Linux
provides no extensible interface for memory translation, un-

1



like its other subsystems (e.g., VFS for file systems [51]).

Contributions. We develop a pragmatic OS framework and
toolchains atop Linux to embrace new hardware translation
architectures for today’s memory technologies. We term our
framework Extensible Memory Translation (EMT). We target
Linux as it is still the de facto commodity OS and is mostly
assumed by architecture research on memory systems.

EMT provides an architecture-neutral Linux interface that
1) supports diverse memory translation architectures, 2) en-
ables hardware-specific optimizations, 3) accommodates mod-
ern hardware and OS complexity, and 4) has negligible over-
head over Linux’s hardwired implementation. By abstracting
translation-related operations, EMT simplifies the effort to
support and experiment with new translation architectures
on Linux. With EMT, developers only need to implement an
MMU driver as a hardware-specific implementation of trans-
lation logic, without modifying the architecture-independent
memory management code. EMT also makes it easy to profile
and analyze OS performance with regard to hardware transla-
tion schemes as it abstracts translation-related operations.

We implement EMT on Linux (v5.15), referred to EMT-
Linux. We modularize architecture-independent code with
EMT API, removing hardwired assumptions. EMT realizes
negligible overhead through careful engineering and optimiza-
tions (with less than 0.5% overhead on average across key
OS operations). Moreover, EMT-Linux realizes all existing
features and hardware-specific optimizations in vanilla Linux.

We build on EMT-Linux to add OS support for ECPT [98]
and FPT [87], two new translation schemes. Porting these
new hardware schemes on Linux without a framework like
EMT would require major rewriting of Linux’s memory man-
agement module. With EMT, supporting them on Linux is
modularized with manageable engineering efforts.

Evaluating new hardware schemes on EMT-Linux faces
a common challenge of hardware-software codesign—the
hardware is not yet available to run the OS. To address this
problem, we assemble a toolchain that runs EMT-Linux on
QEMU with an emulated MMU where we implement the
hardware translation logic. Our toolchain enables us to un-
derstand the OS perspective of new translation architectures,
such as its OS overhead over x86. The toolchain also supports
cycle-accurate hardware simulation.

We share our experience of supporting new translation
schemes on EMT-Linux, which enables us to understand OS
memory management challenges beyond hardware perspec-
tives. We present our reflection on the ECPT design and
address correctness challenges such as managing the kernel
page table (kECPT) and the paradox involved in changing
the translations of the kECPT itself and of the kernel code
that manages kECPT, as well as performance challenges like
efficient locking and memory scanning. Arguably, OS frame-
work support is essential to encourage and embrace disruptive
hardware innovations, and EMT is an important step forward.

Summary. This paper makes the following contributions:

• A discussion on empowering new, experimental hardware-
assisted translation architectures on commodity OSes.

• EMT as an extensible framework for developing and eval-
uating OS memory management on new translation archi-
tectures, and its implementation on Linux.

• An experience of building ECPT and FPT on Linux using
EMT and the reflection on hardware/OS designs.

• An open platform for developing, testing, and evaluating
OS kernels on new memory translation architectures.

• Our artifacts: https://github.com/xlab-uiuc/emt.

2 Background

2.1 Memory Translation Hardware
Modern computer systems use hardware-assisted memory
translation, where the translation schemes are defined by the
hardware architecture. Upon a TLB miss, the MMU searches
the translation structures (e.g., a page table) to obtain the
translation—the virtual-to-physical address mapping.

x86 Translation Scheme. All x86 processors since Intel
80386 have used a radix tree, as depicted in Figure 1. The
depth of this tree has increased from two levels in 80386 to
four levels in x86-64, with the fifth level upcoming [3, 110]
and already supported in Linux [43].

L4 L3 L2 L1 Page Offset

63 48 47 39 38 30 29 2120 1211 0

PGD

PA

PUD

PMD

PTE

CR3

Virtual Address (VA)

Figure 1: Radix-tree based page table walk in x86-64 ISA.

The main advantage of radix-tree based translation is space
efficiency—tables at each level are created on demand—if
at any level, no page is allocated within an address range,
the sub-tree is not allocated. This yields significant memory
savings, as the address space of typical applications is sparse.

However, tree-based translation suffers from a major per-
formance drawback—it must sequentially walk the tree with
multiple memory accesses. Page walk caches [32, 40, 87]
and huge pages [69, 81] are used to reduce the length of the
walks, but struggle to address emerging workloads with large
memory footprints and weak-locality access patterns. The
overhead is further magnified in nested translation for virtu-
alized environments. The MMU performs a two-dimensional
walk over the guest and the host page tables. A nested transla-
tion takes up to 24 sequential memory accesses with four-level
page tables, and up to 35 with five-level tables. It is reported
that nested translation can take more than 50% of the execu-
tion time of memory-intensive workloads [27, 48, 77].

2

https://github.com/xlab-uiuc/emt


H3H2H1

PUD-VPN [47:33]

Hash2 Hash3

PTE-VPN [47:15]

MissMiss
PA

PUD (1GB)
Way 2 Way 3

PTE (4KB)

PTE VPN Tag PTE Offset
63 48 47 15 14 12 11 0

Virtual Address (VA) of a 4KB Page

Page Offset

H3H2H1

PMD-VPN [47:24]

Miss

PMD (2MB)

Hash1

Miss

Way 1

Hit

Figure 2: Parallel page-table lookup in an ECPT-based
architecture [98] using three-way cuckoo hashing.

Flattened Page Table (FPT). Recently, extensive efforts are
being made to optimize memory translation architectures. A
common principle is to shorten page table walks of the x86-64
scheme [26, 28, 48, 65, 77, 87, 111]. A recent proposal from
Arm, known as Flattened Page Table or FPT [87, 106], flat-
tens the x86 page tables by dynamically merging intermediate
tree levels to reduce indirections and prioritize caching of
page table entries. Specifically, FPT tries to merge L4 and L3,
as well as L2 and L1, in Figure 1, shortening the walk by half.

Hashing-based Translation and ECPT. Hashing is being
actively revisited for translation [35, 53, 63, 68, 98–100, 109].
We focus on ECPT (Elastic Cuckoo Page Table) [98], a new
hashing-based scheme which effectively speeds up translation
with fully parallel lookups of page table entries.

Figure 2 depicts ECPT-based memory translation. Different
from conventional hashed page tables [46, 54, 60, 104, 109],
ECPT uses process-private hashed page tables that are dy-
namically resized based on occupancy. ECPT uses Cuckoo
Hashing [83] and maintains multiple tables (called ways) to
proactively resolve hash collisions by moving entries across
ways. During a page table walks, the MMU computes hashes
of the Virtual Page Number (VPN) to look up the ways in par-
allel. It eliminates the need for sequential tree walks. ECPT
supports multiple page sizes (e.g., 1GB, 2MB, and 4KB pages)
by maintaining a set of hash page tables for each page size.

To reduce parallel lookups, ECPT uses an in-memory data
structure named Cuckoo Walk Table (CWT); each CWT main-
tains metadata (size and way) of ECPT translation entries.
CWTs are cached in special MMU caches named Cuckoo
Walk Caches (CWCs). During translation, if a requested page
hits a CWC, the MMU can directly look up the specific page
table (with the size) or the specific way.

2.2 OS Memory Management
The OS manages in-memory translation structures like page
tables and other auxiliary structures (e.g., CWT in ECPT),
defined by the hardware architecture. The OS is also responsi-
ble for managing translation data (virtual-to-physical address
mappings and metadata like protection and dirty bits).

Translation information is consumed by almost all OS

1 void vunmap_pmd_range(pmd, addr, end) {
2 pmd_t *pmd = pmd_offset(pud, addr);
3 do { ...
4 // try remove huge page entry
5 int cleared = pmd_clear_huge(pmd);
6 ...
7 if (pmd_none_or_clear_bad(pmd))
8 continue;
9

10 // try remove underlying PTEs
11 vunmap_pte_range(pmd, addr, next, mask);
12 ...
13 }
14 while (pmd++, addr = next, addr != end);
15 } /* mm/vmalloc.c */

Find a 2MB entry (PMD) from
the addr. of a 1GB entry (PUD).

Overloaded semantics:
(1) The entry does not point to

a 2MB huge page;
(2) The entry is not a directory;
(3) No entries of 4KB pages in

the 2MB address range.

The iterator assumes the spatial locality of entries.

Figure 3: Examples of Linux memory management code
that is hardwired to radix-tree based translation.

memory management operations. Hence, translation archi-
tectures have strong implications on OS performance. For ex-
ample, recent work [108] shows that the majority of page mi-
gration cost is from OS memory management on translation-
related operations like unmapping/remapping pages and de-
moting huge pages, instead of actual page copies.

Modern OSes separate architecture-independent OS mem-
ory management and architecture-dependent hardware sup-
port. Mach [25] designed a machine-independent memory
manager where its architecture-independent code makes few
assumptions about MMUs [91]; the design is inherited by
BSD kernels [45]. EMT is inspired by Mach/BSD, but fo-
cuses on empowering new, experimental translation schemes.

Linux layers machine-independent/dependent code differ-
ently. It maintains a multi-level tree-based page table in the
architecture-independent module. This design achieves high-
performance memory management: 1) it enables optimiza-
tions that need to directly manipulate page tables and trans-
lation entries, and 2) it avoids overhead due to indirections.
However, it lacks extensibility to different translation archi-
tectures especially those that do not fit its tree definition such
as ECPT or even the conventional hashed page tables.1

3 The Need for a New OS Framework
Emerging memory technologies and research on MMU ar-
chitectures pose a strong need of developing and evaluating
OS memory management on new translation schemes. The
current practice of evaluating new translation schemes mostly
relies on hardware simulation, either using performance mod-
els to estimate OS overhead [28, 65, 77, 95, 109, 111], or re-
playing traces collected by running workloads on vanilla
Linux [77, 95, 98, 109]. Such approaches can hardly capture
complex OS-architecture interactions [29]. We argue that the
lack of OS effort is largely due to memory management sys-
tems in commodity OSes not providing an extensible interface
for new, different translation architectures.

1Hashed Page Tables (HPTs) was provided by architectures like IA-64
and POWER [1, 10], but Linux does not have native support for HPTs [105].
Linux maintains a software tree-based page table to store full virtual memory
mapping and treats the HPTs as soft-managed extended TLBs. Such an
approach leads to duplication of translation data and redundant maintenance.

3



1 void walk_pte_range(pmd, addr, end, walk) {
2 spinlock_t *ptl;
3 pte_t *pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
4 ...
5 for (;;) {
6 err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
7 ...
8 addr += PAGE_SIZE;
9 pte++;

10 }
11 ...
12 pte_unmap_unlock(pte, ptl);
13 } /* mm/pagewalk.c */

Lock 2MB address range only
once for batched operations.

A custom function uses entry pointers to
perform in-place attribute updates.

Exploit page table entry adjacency to reduce page walk overhead.

Figure 4: Hardware-specific optimizations in Linux.

Hardwiring Translation Schemes Is Untenable. Linux’s
memory management code is currently hardwired to a five-
level tree. Without an extensible framework, it can hardly em-
brace new translation architectures that use different lookup
structures such as hash tables [98, 99, 109], flattened or range
tables [26, 65, 87], and hybrid schemes [27, 63].

Figure 3 shows a representative example in Linux, where
a memory operation for unmapping a virtual address range
at PMD level (vunmap_pmd_range in vmalloc.c) makes the
following assumptions specific to Linux’s tree definition:

• A translation entry of a 2MB virtual address range (PMD)
can be found from the entry of a 1GB address range.

• An entry of a 2MB address range (PMD) either points to a
2MB huge page or a directory of 4KB pages.

• The translation entry of the next 2MB address range can
be iterated by increasing the pointer.

Such implementation patterns are commonplace in Linux’s
current architecture-independent memory management mod-
ule. Hence, supporting a different translation architecture
would require heavy rewriting of existing Linux code.

In fact, it is also nontrivial for Linux to support translation
schemes that use a different tree. Evidently, adding the fifth
level took 715 lines of code changes across 23 files [97],
all in the architecture-independent modules of Linux. Simi-
larly, though FPT’s design strives to limit OS changes [87],
it still introduces nontrivial changes of Linux’s architecture-
independent code to fold the intermediate levels of the tree.

Furthermore, without a well-defined interface, memory
management code becomes hard to maintain due to implicit
assumptions and semantic overloads with continuous opti-
mizations and fixes. In Figure 3, pmd_none_or_clear_bad()
overloads three semantics, making the code hard to maintain.

Hardware-Specific Optimizations Are Desired. Inspired by
Mach/BSD [13, 45, 91] that have clean separation of machine-
independent and dependent code, we started from a pmap-like
interface for Linux. In Mach/BSD, architecture-indepedent
memory management code uses pmap interface to manage
virtual memory mappings. pmap [91] represents a virtual-to-
physical address map, which can point to a VAX linear page
table [70] or segment registers in IBM RT PC. With pmap,
different translation schemes can be supported by writing

pmap modules. Typical pmap operations include creation,
deletion, and update of address mappings [13, 91].

Unfortunately, we find that a map interface like pmap is not
sufficiently expressive to write hardware-specific optimiza-
tions, especially in the Linux context. For example, pmap
routines for inserting or finding a translation, only reference a
virtual address without exposing translation entries. Figure 4
shows three common patterns of optimizations in existing
Linux code: 1) batching with fine-grained locks for range
operations, 2) in-place translation entry updates with no data
copy, and 3) direct fetching of translation entries by offsets.
None of them are easy to write using a map, as they need
to directly manipulate translation entries. As optimizations
of memory management are critical to Linux performance—
27.8% of Linux kernel patches to memory management are
for performance optimizations [59]—a simple map interface
makes it hard to fully empower translation architectures.

Existing Frameworks Do Not Target Translation. Driven
by new memory technologies like tiered memory, several new
memory management frameworks [61, 92, 103] have been
developed to improve the extensibility of Linux’s memory
manager. However, few of them concern hardware translation
architectures, but focus on application-specific page prefetch-
ing and replacement policies. FBMM [103] proposes to reuse
VFS [51] and write memory managers as file systems. It ex-
poses the page_fault VFS callback for managing page table
entries. However, FBMM relies on Linux’s existing code
that is hardwired to the multi-level radix tree structure, and
thus cannot support different hardware translation schemes.
Fundamentally, file system interfaces can hardly serve as an
effective framework for memory translation.

4 EMT Design
Extensible Memory Translation (EMT) is an OS framework
built atop Linux with the goal of empowering new, experimen-
tal memory translation architectures. Figure 5 gives a high-
level overview of EMT. EMT currently focuses on supporting
new memory translation architectures in the OS kernel, in-
stead of exposing them to userspace [47]. The design and
implementation of EMT achieves the following goals:

• EMT is an architecture-neutral framework. EMT is not
hardwired to specific translation structures such as multi-
level tree in Linux. Supporting a new memory translation
scheme should not change architecture-independent code.

• EMT enables hardware-specific optimizations. EMT al-
lows architecture-dependent code to customize routines
for hardware-specific optimizations. The ability to cus-
tomize differs EMT from high-level interfaces like pmap
in Mach/BSD [91] and hat in SunOS [50].

• EMT is modularized and improves maintainability.
EMT provides well-defined translation semantics and or-
ganizes them with an object-oriented design. The interface

4



Memory Mgmt.
linux/mm/...

System Calls
read,fsync,...

VFSEMT

Hardware

HW
Neutral

Operating System

HW
Specific

Data
Structure
(Logic)

Generic
Interface

Memory Mgmt.
linux/mm/...

MMU Hardware

Page Table Mgmt.
linux/arch/*/mm/...

No Interface

Radix

File System

On-disk MMU Hardware

MMU Driver
Radix ECPT FPT

Radix ECPT

Ext4 Btrfs

...

...

Extent B-tree ...

...

Vanilla Linux EMT-Linux VFS Interface

CoupledProposed layer

FPT

Hybrid

Figure 5: Overview of the EMT framework, compared
with vanilla Linux and analogized to VFS.

eliminates architecture-specific or overloaded semantics.
EMT also makes it easy to profile and analyze OS perfor-
mance with regard to translation architectures.

• EMT has negligible overhead. EMT is carefully imple-
mented with compiler optimization, cache efficiency, and
the ability to inline functions. EMT-Linux serves as a per-
formance baseline for new architectures or OS modules.

• EMT accommodates modern hardware and OS com-
plexity. EMT aims to develop insights into complex OS-
architecture interactions. EMT supports all Linux’s mem-
ory management features related to CPU MMU translation
such as huge pages, swapping, DAX memory, etc.

4.1 EMT API
EMT exposes an object-oriented API that organizes transla-
tion related kernel routines around three architecture-neutral
primitives: 1) translation object that maintains all the informa-
tion of a virtual-to-physical address translation, 2) translation
database that stores translation objects of an address space,
and 3) translation service that manages the MMU states.

In EMT, all architecture-dependent code is implemented in
drivers for MMU architectures, referred to as MMU drivers.
To support a new translation scheme on EMT-Linux, one
needs to write the MMU driver that implements EMT API
without the need to modify architecture-independent code.

A key design principle of the EMT API is to abstract the
functions of translation for OS memory management from
hardware-defined shapes. Despite many different translation
architectures (§2), the essential function of memory transla-
tion is to output the virtual-to-physical address mapping and
all associated metadata, which is abstracted as a translation
object in EMT. EMT avoids assuming shapes of translation
data like translation entry schema or translation data struc-
tures. How to encode translation information of hardware-
defined shapes into the EMT API is the job of MMU drivers.

The EMT API is organized as 1) basic functions that must
be implemented by each MMU driver for its supporting trans-
lation architecture, and 2) customizable functions that have a
default implementation that is architecture-independent; the
default implementation only uses basic functions and other

//// Translation Object
// Read the attribute of an object based on the attribute key
tobj_read_attr(tobj, attr_key) -> (error, attr_value)
// Update the value of a given attribute in an object.
tobj_write_attr(tobj, attr_key, new_val) -> (error, old_val)
...
//// Translation Database
// Find a translation object in a translation database
tdb_find_tobj(tdb, vaddr) -> (error, tobj)
// Update a translation object matching tobj's va
// by copying attributes of tobj.
tdb_update_tobj(tdb, tobj) -> (error, old_tobj)
// Remove the given translation object from the database.
tdb_remove_tobj(tdb, tobj) -> (error, old_tobj)
...
//// Translation Service
// Switch the translation database of the current address space
tsvc_switch_tdb(tdb) -> (error, out_tdb)
// Read the translation database of a given address space
tsvc_read_tdb(cpu) -> (error, out_tdb)
...

Figure 6: Examples of basic functions in the EMT API.
EMT exposes 15 basic functions in total.

common code. These routines can be customized by MMU
drivers for hardware-specific optimizations.

The basic functions represent the minimal set of functions
to support a new translation architecture. Developers can start
with basic functions to achieve a functional kernel and then it-
eratively add optimizations via customizable functions. Basic
functions free developers from sophisticated optimizations in
Linux; it leads to a more friendly development and test cycle.

4.1.1 Basic Functions

Basic functions are expected to be architecture-dependent
and are required to be implemented by each MMU driver.
Figure 6 gives examples of basic function APIs. The API
design avoids assuming specific hardware schemes like the
five-level radix tree (§2) or page table entry schema. It also
prevents overloaded semantics like pmd_none_or_clear_bad
(Figure 3) due to software evolution.

Translation Object. A translation object encodes a virtual-to-
physical address mapping and all its associated metadata. For
paged architectures, it encodes translation information stored
in page table entries. For tree-based architectures, a trans-
lation object encodes information in page table entries that
point to the physical page (see §5). A translation object can
also represent segments or variable-length memory regions.
Translation metadata are encoded as attributes such as size,
protection, presence, swap, etc., which are queried by general
OS memory management. EMT lets MMU drivers encode
metadata into architecture-dependent bits. MMU drivers can
also encode architecture-specific attributes and use them to
implement architecture-specific features like protection keys
and capabilities [19, 21, 107].

Translation Database. Translation objects of an address
space are stored in a conceptual database. The database is
commonly implemented by a page table (which can be of vari-
ous shapes) in an MMU driver. It can also be implemented by
multiple co-existing page tables (e.g., ECPT needs separate

5



//// Translation Object Iterator
// Return the current translation object and advance the iterator
tobj_iter_next(iter) -> (error, tobj)
...
//// Huge Page
// Check if a given virtual address range can be a huge page
thp_eligible(tobj, pg_size, vma) -> eligible
...
//// Address Range
// Check if the given virtual address range has no mapping in it
addr_range_void(tdb, start, end) -> is_void
...
//// Lock
// Get a lock to protect all translation objects in the range
addr_range_get_lock(tdb, start, end) -> (error, tlock)
...
//// Swap
// Get the Linux swp_entry_t from a translation object
tobj_to_swap(tdb, tobj) -> (error, swp_entry)
...

Figure 7: Example customizable functions in the EMT API.
EMT exposes 35 customizable functions in total in 7 groups.

page tables for each userspace process and for a shared ker-
nel space across processes; see §6), or by segments or VMA
registers [63, 111]. EMT requires a translation database to
return one and only one translation object for a virtual ad-
dress, as the function of the database. EMT does not concern
the shape of the database. Its basic functions abstract away
architecture-specific structures.

The EMT API decouples translation objects from transla-
tion databases; the former does not concern how translation
data are stored, while the latter does not interpret translation
objects. The benefit is modularity, making it easy to reuse
existing code (as shown by the FPT and ECPT MMU drivers).

Translation Service. A translation service abstracts the
MMU of a system. It is the root of the EMT API, and manages
the creation, destruction, and switching of address spaces.
Upon a context switch, the translation service is called to
switch the databases. Translation service decouples transla-
tion management from task management.

4.1.2 Customizable Functions

Customizable functions provide an interface for MMU drivers
to implement hardware-specific optimizations. Each customiz-
able function has a default architecture-neutral implementa-
tion using basic functions and other architecture-independent
code. Figure 7 gives examples of customizable function APIs.

Customizable functions are exposed to MMU drivers via a
combination of redefinable macros, following Linux’s conven-
tion. The architecture-neutral version is wrapped in #ifndef
so that it can be used if no architecture-specific implemen-
tation is available. If an MMU driver wants to implement
a customizable function, it defines the customizable func-
tion name to its own implementation; otherwise, the #ifndef
redirects the interface to the default implementation. Since
customizable functions always have an architecture-neutral
implementation, adding new customizable functions in EMT
(if needed in the future) will not break existing MMU drivers.

In principle, customizable functions are those that can ben-

1 int tobj_iter_next(struct tobj_iter *iter, struct tobj *tobj)
2 { ...
3 int ret = tdb_find_tobj(iter->tdb, iter->va, tobj);
4 ret = tobj_read_attr(tobj, TOBJ_ATTR_SIZE, &size);
5 if (!ret) iter->va += size;
6 return ret;
7 } /* mm/emt-generic.c */

(a) Default (architecture neutral)
1 int tobj_iter_next(struct tobj_iter *iter, struct tobj *tobj)
2 { ...
3 // handling the most common case of iterating in a 2MB range
4 if (iter->ptep) {
5 tobj->va = iter->va;
6 tobj->pte = iter->pte;
7 if ((iter->va + PAGE_SIZE) & (~PMD_MASK)) {
8 iter->va += PAGE_SIZE;
9 iter->pte++; // Exploit radix's spatial locality

10 return 0;
11 }
12 // Cross 2MB boundary, update ptep based on pmd
13 }
14 ... // handling other cases.
15 } /* arch/x86/mm/radix.c */

(b) x86-64 radix MMU driver

Figure 8: A customizable function of the iterator.

efit from architecture-specific optimizations. The choice now
is through high-level reasoning together with profiling that
identifies performance-critical code. Currently, EMT exposes
different groups of customizable functions, as exemplified by
Figure 7. We discuss the iterator group as an example.

Translation-Object Iterator. Iterating over a large number
of translation objects is a common management pattern when
the OS scans a memory region (e.g., for page migration [14]
and huge-page promotion [16]). The performance of such
operations is critical, e.g., an optimized iterator can reduce
page fault handling cost by 52.5% (§8.4). EMT provides a
translation-object iterator with customizable functions. Fig-
ure 8a shows the default implementation of the iterator’s
tobj_iter_next() function, which is not efficient—the OS
needs to walk from the root to the leaves of the page-table
tree in every iteration using tdb_find_tobj. Note that such
OS walks cannot benefit from hardware caches like PWCs as
they are done by software. Figure 8b shows the customized
implementation of the x86-64 MMU driver that leverages spa-
tial locality of the radix tree to directly increment the pointer
to get the next object. We discuss the implementation of the
ECPT MMU driver in §6.2.

EMT’s iterator functions differ from Linux’s page-table
iterator [90]—it does not assume the radix tree structure.
EMT’s iterator does not return intermediate entries (which
are specific to tree schemes), but returns translation objects.

4.2 Generality
It is hard to prove generality, but our effort on supporting x86-
64 radix tree, FPT, and ECPT indicates that EMT can express
different hardware schemes, and all related optimizations.
These schemes represent tree- and hashing-based translation
designs, which ground many emerging architectures. A few
new architectures [27, 56, 63, 111] propose hybrid designs
which often use a fast scheme for common patterns and a

6



slow scheme for correctness [56, 63, 111], or expose multiple
schemes to userspace [27, 47]. For pure hardware-based fast
schemes [56, 111], the translation is still the traditional one
from an OS perspective (e.g., Midgard [56] uses radix tree
as its backend). For architectures that use multiple schemes
for different address space segments, the MMU drivers can
manage multiple page tables under the hood of a database.

From a metadata perspective, EMT can support address
translation schemes with coupled or separate metadata man-
agement. For metadata that are separately stored from trans-
lation structures, the MMU driver encodes and updates the
translation entry and its metadata separately in the translation
object. For example, EMT supports protection keys like In-
tel MPK [21] and hardware capabilities [107] by encoding
keys as attributes of translation objects. EMT naturally sup-
ports capability-based translation [42, 107] which encodes
permissions into capabilities (protected pointers).

EMT also supports mechanisms that manage cache modes
like PAT [74] and MTRR [72]. EMT views the cache modes
of a page as attributes of its translation object. When the
cache mode of a page is changed, the MMU driver updates
the attributes. For example, the x86 MMU driver will update
the PAT, PCD, and PWT bits of its translation entry [82].

Limiations. EMT only concerns translation, and does not
change operations on physical memory pages. EMT fo-
cuses CPU virtual-to-physical translation and does not tar-
get IOMMU translation for DMA requests. Linux code
for IOMMU translation is also hardwired to the radix-tree
scheme; the EMT approach can potentially apply. EMT as-
sumes that programs run with virtual addresses; EMT cur-
rently does not support designs that make program use physi-
cal addresses directly [101, 102].

EMT currently only supports the native environment; vir-
tualization support is on the roadmap. As the extended page
table [19] (EPT) has a similar structure as the native page
table, we plan to create a virtualization-specific MMU driver
to manage EPT. The driver creates a translation database for
each VM and handles tasks like changing EPTP registers
upon VM switches and allocating EPT tables. KVM can call
EMT APIs accordingly. We expect paravirtualization support
(pv_ops.mmu [73, 75] in particular) to be encapsulated in the
MMU driver: MMU drivers with paravirtualization support
can call pv_ops.mmu for function patching.

5 EMT-Linux with x86-64 MMU Drivers
We develop EMT on Linux, referred to as EMT-Linux. Con-
ceptually, it took four steps: 1) identifying memory manage-
ment code in architecture-independent modules that are hard-
wired to x86-like, tree-based translation scheme; 2) rewriting
them using the EMT API; 3) moving architecture-specific
optimizations into the x86-64 MMU driver, and 4) writing
default implementations of customizable functions.

The EMT implementation on Linux (v5.15) takes 9.5K

1 void walk_tobj_range(start, end, walk) {
2 struct tlock lock; struct tobj_iter iter;
3 struct tobj tobj; ulong size;
4 struct tdb *tdb = walk->mm->tdb;
5 err = addr_range_get_lock(tdb, start, end, &lock);
6 addr_range_write_lock(&lock);
7 err = tobj_iter_init(tdb, start, end, &iter);
8 ...
9 while (tobj_iter_has_next(iter)) {

10 err = tobj_iter_next(&iter, &tobj);
11 err = tobj_read_attr(&tobj, TOBJ_ATTR_SIZE, &size);
12 err = walk->ops->tobj(tobj, tobj->va, tobj->va + size,

walk);↪→
13 ...
14 }
15 tobj_iter_end(&iter);
16 addr_range_write_unlock(&lock);
17 addr_range_put_lock(&lock);
18 } /* mm/pagewalk.c */

Customizable
split PT lock.

Customizable iterator can be
implemented as ++ for performance.

EMT also allows in-place operations
via low-level abstractions.

Figure 9: Rewriting code in Figure 4 with EMT.

lines of code changes (7.3K for interface refactoring and
2.2K for the x86-64 MMU driver) in 15 person-months. We
changed 196 kernel functions in the mm directory of Linux—
most memory management code interacts with the page table.

We use macros and inline functions to minimize interface
overhead as per Linux’s coding style [20]; #ifndef-based
function redirections are used otherwise. Specifically, we turn
functions no more than three lines into macro or inline func-
tions. We ensure that EMT does not break performance char-
acteristics, e.g., no increase of stack size or call stacks, and no
decrease of instruction cache hit rates in most cases (§8.3).

Moreover, we preserve all of Linux’s existing architecture-
specific optimizations and realize them in the x86-64 MMU
driver. Hence, EMT supports all virtual memory features of
vanilla Linux and is transparent to user applications.

OS Memory Management with EMT. In EMT-Linux, OS
memory management is no longer hardwired to specific trans-
lation schemes. Meanwhile, EMT-Linux reserves hardware-
specific optimizations like in Linux—both basic and customiz-
able functions can be instantiated by different MMU drivers.
Figure 9 shows the code in EMT-Linux that implements the
hardwired Linux routine in Figure 4. It uses the translation-
object iterator (see Figure 8) to scan all the pages in a memory
region. This is a common pattern used in many OS memory
management operations such as page promotion and migra-
tion, as well as page eviction (e.g., using LRU and MGLRU).

Figure 10 shows a skeleton of the page fault handler in
EMT-Linux. In vanilla Linux, the page fault handler walks
down the page-table tree level by level to determine the type of
faults and dispatch them to corresponding subroutines (e.g.,
a leaf-level PMD entry implies a 2MB page). Differently,
EMT-Linux’s page fault handler decouples page sizes from
the translation data structures (the radix tree). It looks at the
translation object and the corresponding page size based on
the faulting address, and decides the subroutine to invoke.

Swapping operates on translation objects that map pages to
be swapped. Different architectures may encode swap-page
information differently. x86-64 MMU driver stores swap in-

7



1 static vm_fault_t __handle_mm_fault(vma, vaddr, flags)
2 { ...
3 struct tobj tobj;
4 struct tdb *tdb = vma->vm_mm->tdb;
5 err = tdb_find_tobj(tdb, vaddr, &tobj);
6 err = tobj_read_attr(&tobj, TOBJ_ATTR_MAPPED, &mapped);
7 ...
8 if (mapped) {
9 if (flags & FAULT_FLAG_WRITE) { // fix the write fault

10 err = tobj_read_attr(&tobj, TOBJ_ATTR_WRITE, &write);
11 if (!write)
12 return do_wp_page(&vmf);
13 }
14 ... // many other fixes
15 } else { // mapping does not exist;
16 ...
17 while (pg_size > BASE_PAGE_SIZE) { // try huge page
18 if (thp_eligible(tobj, pg_size, vma)) {
19 int ret = create_huge_page(&vmf, pg_size);
20 ...
21 }
22 pg_size = dec_page_size(tdb, pg_size);
23 }
24 if(vma_is_anonymous(vma)) { // handle anon page fault
25 struct page *page = alloc_page_vma(...);
26 if (!page) goto oom;
27 struct tobj old_tobj;
28 err = tobj_update_attr(&tobj, TOBJ_ATTR_PA,
29 page_to_pfn(page) << BASE_PAGE_SHIFT);
30 ... // update other attributes like permissions
31 err = addr_range_get_lock(tdb, vaddr,
32 vaddr + BASE_PAGE_SIZE, &lock);
33 addr_range_write_lock(&lock); // lock the range
34 err = tdb_update_tobj(tdb, &tobj, &old_tobj);
35 addr_range_write_unlock(&lock);
36 addr_range_put_lock(&lock);
37 return 0;
38 }
39 ... // handle other type of base page faults
40 }
41 ... // error handling (e.g., oom)
42 } /* mm/memory.c */

Figure 10: Snippet of EMT-Linux’s page fault handler.

formation in a page table entry if the present bit is cleared;
huge page swapping [44] is done by encoding PMD entries.
ECPT and FPT use the same mechanism. EMT provides cus-
tomizable functions if architectures need different encoding.

EMT encapsulates translation cache management in MMU
drivers, as the cache structure is architecture-specific. For
example, ECPT does not use x86-64 PWCs but has CWCs to
cache page size and way information [98]. TLB-related code
is handled with the same principle. The MMU driver performs
TLB flushes and guarantees the consistency of cache state.
Batch invalidation is supported by customizable functions.

x86-64 MMU Driver. For the x86-64 radix-tree translation
scheme, our x86-64 MMU driver maintains the multi-level
tree page table. The MMU driver encodes page table entries
at all levels of the radix tree for a given virtual-to-physical
address mapping in the translation object. This encoding
enables the MMU driver to realize all the optimizations spe-
cialized for the tree-based x86-64 page table, while making
architecture-neutral code agnostic. For example, the MMU
driver can directly operate on the PMD or PUD entries to
implement Linux’s split page table lock [15] through the
addr_range_get_lock customizable function (Figure 9). The
MMU driver can also implement optimizations that leverage
spatial locality of the tree structure, as exemplified by the iter-

QEMU
• x86-64 MMU
• ECPT MMU
• FPT MMU

EMT-Linux
x86-64/ECPT/FPT MMU drivers 

Instruction 
analyzer

OS kernel
overhead

Memory 
simulator

Instructions 
per cycle 

(IPC)

Instruction
trace

Memory
trace

Figure 11: Emulator toolchain for OS development and
evaluation on experimental memory architectures.

ator (Figure 8). Encoding attributes of x86 page table entries
via translation object API is straightforward by reading/writ-
ing bits in the entries, and our x86-64 MMU driver supports
hardware-specific features like Intel MPK.

FPT MMU Driver. We implemented an MMU driver for
a new translation scheme based on Flattened Page Ta-
ble (FPT) [87]. The FPT design aims to minimize OS
changes [106] and is based on the x86-64 radix-tree page ta-
ble. Without an interface like EMT, it needs nontrivial changes
to Linux’s architecture-independent code, including changing
macros that define bits in page table entries and checking if
a level needs to be folded. The Linux prototype in the FPT
paper [87] supports flattening of L3+L2 only. We wrote the
FPT MMU driver by reusing the x86-64 MMU driver code
with 664 lines of C code. With the EMT API, no architecture-
neutral OS code needs to be changed. Our FPT MMU driver
supports all three types of flattening patterns of tree levels,
and it co-exists with the x86-64 radix MMU driver.

6 ECPT on EMT-Linux
6.1 Emulator-based Toolchain
It is challenging to develop OSes for new translation archi-
tectures without manufactured MMU hardware. We did not
find an available toolchain for developing and evaluating OS
kernels with experimental architectures like ECPT. The orig-
inal evaluation of ECPT [98] collects memory traces from
simulation using Simics [76] on vanilla Linux and replays
traces in SST [94] that simulated an ECPT MMU. Simics is
closed-source and only supports existing ISAs.

We develop an emulator-based toolchain using QEMU [5]
(Figure 11). We use QEMU’s software MMU mechanism [4]
to develop an emulated ECPT MMU where we implement
ECPT translation logic and hardware caches in 3.1K lines
of C code. QEMU offers an emulated x86-64 MMU which
serves as a baseline for performance evaluation.

Our toolchain can connect to trace-driven hardware sim-
ulators (QEMU provides no cycle-accurate simulation). We
developed instruction and memory tracers using QEMU’s
TCG plugin [23]. The instruction trace helps analyze kernel
and userspace behavior (§8.4), as well as hardware simulation.

6.2 ECPT MMU Driver
We implement an ECPT MMU driver on EMT based on
the hardware architecture design [98]. We use a three-way

8



VA [47:15]; 33bits
VPN Tag PTE 0 PTE 1 PTE 2 PTE 3 PTE 4 PTE 5 PTE 6 PTE 7Conceptual

Our Impl. PTE 6PTE 5PTE 4PTE 3PTE 2PTE 1PTE 0 PTE 7

Partial VPN Tag (5 bits) Cluster Counter (5 bits)

Figure 12: Implementation of 64-byte PTE-ECPT entry
clusters consists of eight 8-byte PTE entries. Each entry
contributes five bits for the VPN tag or a cluster count.

ECPT for each page size (4KB/2MB/1GB) so the translation
database manages nine control registers, one per way; regis-
ters are updated upon a process context switch. The driver
also manages nine registers for the kernel page tables (§7.1).
The ECPT MMU driver takes 7.4K lines of C code.

The ECPT structures are implemented in the ECPT MMU
driver. For memory efficiency, we allocate ECPTs of a specific
size on demand. We follow the ECPT design of clustering
eight translation entries into a 64-byte cache line to improve
locality. To do so, we construct the VPN tag (Figure 2) with
bits from multiple translation entries, as shown in Figure 12.
For the PTE VPN tag, each entry contributes five bits so the
first seven entries together make up the VPN tag, and the
last entry contributes five bits as the count of valid entries
in the cluster. The count is used to calculate occupancy (for
table resizing) and for freeing the cluster. These metadata are
managed by basic functions. PUD and PMD entries use the
same design but with 24 bits and 15 bits for the VPN tag.

When a table’s occupancy exceeds a threshold (0.6 as
in [98]), a background kernel thread resizes the table and
migrates entries from the old table to the new table gradually.

Except for the repurposed five bits for metadata, ECPT’s
translation entry by design follows x86-64 PTE format. We
reuse the PTE encoding from the x86 radix MMU driver,
enjoying the benefit of EMT’s object-oriented design.

Cuckoo Walk Tables (CWTs) are implemented in the ECPT
MMU driver, invisible to architecture-independent code. We
follow the ECPT design [98] to use a 5-bit section header (a
section is the address range translated by one ECPT transla-
tion entry) and cluster 64 headers into a 64-byte cache line.
Each header is one byte and contributes three bits to encode
the VPN tag and count of valid section headers.

Optimizations. We implemented a series of optimizations
through the customizable functions, driven by benchmarking
and profiling (§8.4). For example, we customize the iterator
with architecture-specific optimizations to accelerate range
operations. The idea is to exploit locality within a transla-
tion entry cluster: the iterator finds the next entry by pointer
arithmetic, instead of hashing-based lookups, when the entry
is not the last one in its cluster. One common optimization
pattern is to minimize the cost of range operations—the de-
fault implementation (e.g., Figure 8a) often takes too many
fine-grained hashing-based operations.

7 Reflection on ECPT Design
We show that building OS components is essential to un-
derstanding architecture designs. The efforts on developing
and evaluating ECPT with EMT-Linux reveals OS challenges
of using a fast translation scheme, which were unexpected
(undocumented in the original hardware design).

7.1 Managing Kernel Page Tables
In modern OSes like Linux, the kernel address space is shared
across processes [9]. In tree-based translation, sharing is
realized by having high-level page table entries pointing to the
shared subtree of the kernel address space [22]. This design
does not apply to hashing-based translation. One option is to
maintain one ECPT for each process containing both user- and
kernel-space addresses. However, such a design is memory
inefficient and leads to high overhead, e.g., once a translation
of a kernel-space address is updated, the OS must update the
corresponding entries in ECPTs of all processes.

Our ECPT MMU driver maintains a global kernel-space
ECPT (kECPT) shared among processes and an independent
user-space ECPT (uECPT) for every process. The kECPT has
the same page size and way configuration as each uECPT.
The kECPT and uECPTs are managed independently. When
KPTI (kernel page table isolation) [22] is enabled, two in-
dependent global kECPTs are managed (a complete kECPT
and a minimal kECPT). This design requires ECPT MMUs to
expose another nine control registers that point to kECPT(s).2

Self-Reference Paradox. Managing kECPTs is more chal-
lenging than uECPTs. Different from uECPTs that are man-
dated by the kernel, the kECPT manages the kernel’s own
code and data—translations for kECPT management code and
kECPT itself are stored in kECPT. This creates a challenge for
ECPT which needs to move translation entries across ways
for resolving hash collisions—in the moving window, if the
entries map the kECPT itself or the kernel code for moving
entries are missing, the kernel crashes due to missing transla-
tion of the kECPT or code, as shown in Figure 13. Frequent
triggers are kernel’s huge page promotion/demotion which
remove entries and insert new entries in different tables.

We term the issue self-reference paradox. The root cause
is a lack of hardware support for atomic updates on multiple
memory locations. Radix-tree page tables do not face this
paradox, because they do not move entries and the huge-
page promotion/demotion is done by updating one PUD/PMD
entry. In general, the self-reference paradox can happen in
kernel page tables that need to move entries (many advanced
index schemes need to move entries [36, 113]). Note that

2The cost of additional architectural registers is negligible; they add to
less than 0.01% of the die area. The area overhead was measured with the
same methodology as in [98, 100] using CACTI [30] with 22nm technology.
The new design also distinguishes whether the target address belongs to the
upper or lower half of the address space and directs the lookups to uECPT or
kECPT. CWC is shared and has no additional cost.

9



kECPT PTE

kECPT PTE

Virtual Memory Physical Memory

Kernel Code
Move PTE

Move PTE

Kernel Code
Move PTE

Figure 13: An example of self-reference paradox caused
by the need of moving kECPT entries that are needed to
find kernel code for moving kECPT entries (§7.1).

other kernel structures like forwarding table [112] do not
face this paradox if they do not map kernel code/data.

We address the paradox via a series of software-hardware
endeavors. First, we always copy the entry to the new location
before removing it at the old location, which may cause dupli-
cated entries but no missing entries. We instruct the MMU to
handle duplicate entries that have the same virtual-to-physical
address mapping and the same protection bits; the dedupli-
cation policy also works for huge-page promotion/demotion
as it does not change the mapping or protection. We avoid
location-changing read-update-write operations in OS code
so that duplicated entries always have the same mapping and
protection. For ECPT, any operation that may change the
content of an entry can only be done after the entry is locked.

Atomic kECPT Switching. Another form of self-reference
paradox manifests via KPTI [22]—when switching between
the kernel space and the user space, the OS needs to switch
between a full kECPT and a minimal kECPT. One potential
implementation is to use multiple mov instructions to redirect
control registers from the old kECPT ways to the new ways.
However, this may lead to an inconsistent ECPT state during
the switch window, where some registers point to new ways
and the others point to old ways. This leads to issues when
the translations of currently executing kernel code are stored
in different ways across the new and old kECPTs. Note that
simply keeping context switch code covered by both kECPT
is not enough since the instructions can reside in different
ways of the old and new tables. Instructions might not be
successfully fetched when kECPT state is inconsistent.

Solving this problem needs a mechanism for atomic switch-
ing from all old kECPT ways to the new kECPT ways. Such
an atomic switching mechanism can be realized with hard-
ware support. Our solution is to add additional sets of kECPT
control registers and the hardware switches between the two
sets of control registers, in a similar vein as the VMLAUNCH and
VMRESUME instructions of x86 on updating multiple registers
together. The switch is a serializing instruction to ensure that
all instructions after it will use the new kECPT.

7.2 Implications on OS Performance
Managing Sparse Address Space. A fundamental efficiency
property of tree-based page tables is the ability to manage

sparse address space, which is critical for OS memory man-
agement which commonly needs to scan large, but sparse ad-
dress ranges. In tree page tables, a high-level entry can encode
properties of a large address range, e.g., a nonexistent PMD
entry indicates no valid page allocated in the corresponding
2MB range. Hashed page tables have no such hierarchical
relationship between entries; hence, the OS may go through
all the possible entries in the large, sparse address range.

One optimization is to enable a similar property in ECPT
by designing special entries that are not for translation, but for
encoding states. The OS checks the entry to learn the states of
the corresponding address range, e.g., the OS can query such
an entry to check if the corresponding 2MB address range
has any allocated page, instead of checking all possible PTE
entries. The design would need to cooperate with the MMU.

Multicore Scalability. We find it nontrivial to implement
efficient locking primitives similar to Linux’s split page table
lock [15] in ECPT, because the location of an ECPT entry
can be moved due to insertion or rehashing. The movement of
entries makes it prone to deadlocks, e.g., one thread t holding
a lock l and inserting a new entry, thus consequently requires
moving an existing entry e (see [83]) which is locked by
another thread that waiting on l. One solution is to let t re-
lease all its acquired locks and retry later when deadlock. The
complexity lies in recording and rewinding states changed
by t. We are exploring an alternative design that introduces
a separate lock table to provide the OS with the flexibility
of implementing lock primitives, which has the semantic of
locking both an address range and the related entries. Our
implementation of the ECPT MMU driver has no correctness
issue, as we use a coarse-grained lock.

8 Evaluation
8.1 Methodology
We validate the correctness of the EMT-Linux implementation
using Linux tests. Since EMT supports all virtual memory
features in Linux, EMT-Linux should pass any userspace tests.

We also measure the interface overhead of EMT by running
the same set of performance benchmarks on EMT-Linux (§5)
and vanilla Linux running upon the same hardware.

We then measure the performance of EMT-Linux on ECPT.
We run EMT-Linux with the ECPT MMU driver on top of an
emulated ECPT MMU using our emulation framework (§6.1).
We compare the performance of EMT-Linux with the Radix
MMU driver running on an emulated x86-64 MMU.

Benchmarks. We use LEBench [93] as a micro benchmark
to measure the performance of core OS operations such as
page fault handling, context switching, and system calls.

We use nine memory-intensive macro benchmarks that
stress the TLB and need off-TLB translation. We use the same
set of macro benchmarks from the ECPT paper [98, 100]
except two where we failed to reproduce the working set.

10



(a) Micro benchmark (b) Macro benchmark

Figure 14: Performance overhead of EMT-Linux over vanilla Linux (measured by the micro and macro benchmarks).

The macro benchmarks include seven applications from the
GraphBIG benchmark suite [80]: Breadth First Search (BFS),
Depth First Search (DFS), Degree Centrality (DC), Single
Source Shortest Path (SSSP), Connected Components (CC),
Triangle Count (TC), and PageRank (PR); they use the LDBC-
1000K dataset [2], with working sets of about 8.5 GB. We
also run the GUPS benchmark [58] which issues random
memory updates, and a memory test from Sysbench [66].
Both GUPS and Sysbench have 64 GB working sets.

We also evaluate three memory-intensive applications: Re-
dis, Memcached, and PostgreSQL. Table 1 shows the work-
loads. All these applications are multithreaded programs.

8.2 Functional Correctness
We show that EMT supports all memory management features
of Linux by running Linux Test Project (LTP) [12] against
EMT-Linux. We use the default kernel configuration for the
generic kernel (5.15.0-125-generic) of Ubuntu 20.04. LTP
includes 1,405 tests in total and 1,208 of them apply to the
kernel configuration. EMT-Linux with Radix, ECPT, and FPT
MMU drivers both pass all 1,208 tests which covers 376 sys-
tem calls. We also cross-validated program outputs of the
micro and macro benchmarks across EMT-Linux and vanilla
Linux. We use testing as a continuous effort throughout our
development, rather than a one-time effort, which helped cap-
ture bugs in a timely manner.

8.3 EMT Interface Overhead
EMT introduces negligible overhead. We run the benchmarks
and application workloads on vanilla Linux and EMT-Linux
running on the same hardware. The hardware is a dual-socket
Intel Xeon Gold 6346 server at 3.10GHz with 16 cores and
256GB DDR4-3200 DRAM. We disable hyperthreading and
fix core frequency to make the measurement stable. The over-
head of EMT is calculated by normalizing the results of EMT-
Linux to vanilla Linux. We experimented with various kernel
configurations (e.g., enabling THP); the results are consistent.

Figure 14a shows the results of kernel micro benchmarks
LEBench [93]. EMT-Linux exhibits an average normalized
kernel-routine performance of 99.9% relative to vanilla Linux
(with a standard deviation of 1.1%) across the 41 LEBench mi-
crobenchmarks. The largest overhead comes from the “epoll

Application Working Set # Records Read:Write # Requests

Redis 128 GB 536 M 50:50 60 M
Memcached 69 GB 56 M 80:20 10 M
PostgreSQL 64 GB 21 M 100:0 25 M

Table 1: Application workloads used in the evaluation.

(a) Throughput (b) Avg. Latency (c) P99 Latency

Figure 15: Performance overhead of EMT-Linux over
vanilla Linux on real-world applications

big” benchmark, where EMT-Linux slows the benchmark by
4.2%. It was caused by not inlining certain functions due to
coding style restriction, which can be further optimized by re-
structuring the code or forcing inlining. Figure 14b shows that
the overhead of EMT-Linux is less than 0.1% on the macro
benchmarks. Figure 15 shows the normalized throughput, av-
erage latency, and tail latency of three real-world applications
(with workloads in Table 1) on EMT-Linux, normalized to
their performance on vanilla Linux. The measured differences
of the three metrics are within 0.1%, 0.1%, and 0.2%, respec-
tively. The results of the real-world application show that the
EMT interface does not affect system responsiveness.

The negligible overhead is attributed to two kinds of en-
deavors. First, we carefully engineered the EMT interface
to preserve the performance characteristics—we minimize
increased stack size or deepened call stacks, and maintain
cache efficiency. Instruction cache hit rates on EMT-Linux
differ from those on vanilla Linux by at most 0.8%. Second,
EMT enables us to implement all the hardware-specific opti-
mizations in the MMU drivers.

8.4 OS Performance on ECPT

We show that EMT enables us to understand OS performance
on new translation architectures using ECPT as an example.
We evaluate ECPT by running EMT-Linux with the ECPT
MMU driver on our emulation framework and comparing

11



Page Faults khugepaged (THP) System Calls
Timers Others

Radix
ECPT

BFS
DFS DC

SSSP CC TC PR

Sysb
en

ch
GUPS

Red
is

M
em

ca
ch

ed

Postg
reS

QL
0.0

0.5

1.0

1.5

N
or

m
. #

 in
st

ru
ct

io
ns

(a) 4KB

BFS
DFS DC

SSSP CC TC PR

Sysb
en

ch
GUPS

Red
is

M
em

ca
ch

ed

Postg
reS

QL
0.0

0.5

1.0

1.5

2.0

N
or

m
. #

 in
st

ru
ct

io
ns

(b) THP

Figure 16: Distribution of kernel instructions of EMT-
Linux with the Radix and ECPT MMU drivers.

Common routinesInterface calls Arch specific

all..

thp_eligible
ec..

e..

ks..

ge..

en..

tb..

ecpt_find_tobj

__..

ex..

vf..

e..

t..
addr_range_voiddo_anonymous_p..

handle_mm_fault

ec..
tdb_find_tobj

__..

t..
t..

tobj_iter_next

handle_pte_fault

e..
ne..ecpt_addr_range_void

e..

e..
e..

e..

asm_exc_page_fault

ca..

ex..p..

ec..

(a) ECPT MMU driver with no iterator optimization
ecp..

tdb_find_tobj
ptb..

ecpt_addr_range_void
ecpt_s..

tdb_..
ecpt..

handle_pte_fault

ecpt_find_tobj

thp_eligible

e..
tentey_iter_..

ecp..

__x64_..

ext4_..ecp..

ksys_t..

ecpt..

vfs_read
ecpt_s..

ecpt..

k..

k..

entry_S..
k..

do_anonymous_page
alloc_pa..

ecpt..

ecpt_tb..

get_pa..
__alloc..

l..

ext4_..

tdb_.. c..

_..

k..
tdb_..

new_s..ecpt..
addr_range_void

l..

handle_mm_fault

call_..ecpt.. tdb_..

asm_exc_page_fault

tdb_fin..

(b) ECPT MMU driver with iterator optimization

Figure 17: Flame graph of EMT-Linux kernel instructions
when running GraphBig BFS (THP enabled).

its performance with the x86-64 radix MMU driver. We run
macro benchmarks and application workloads and record all
kernel and user instructions (with both 4KB pages and THP).

Understanding OS Overhead of ECPT. Figure 16 shows
the distribution of kernel instructions; most of them are for
page fault handling. Compared with Radix, ECPT spends
1.74x more instructions on page fault handling on average for
4KB pages, and 2.59x more with THP enabled. When THP
is enabled, ECPT leads to relatively more work than Radix
because Linux’s THP implementation uses a few expensive
operations to check if there exist valid entries in a given ad-
dress range. These checks are on the critical path of page fault
handling when THP is enabled since the kernel needs to know
if the 2MB range has any mappings before it can decide if a
2MB huge page mapping should be built. For Radix, these
checks are cheap (0.39% of total kernel work) because a PMD
entry has information on PTE tables. If the entry is not valid
or present, then neither 2MB nor 4KB mappings exist; the
huge-page bit tells if the entry points to a huge page or a
directory of 4KB pages. However, these checks are expen-
sive in ECPT, as ECPT’s entries are independent, the kernel
may need to check all 512 4KB entries of pages in the 2MB
range, which requires many expensive lookup operations. We
discussed the potential solution in §7.2.

(a) Page table walk latency (b) IPC

(c) Total cycles (d) Total cycles (running phase)

Figure 18: ECPT hardware simulation results— Page Ta-
ble Walk Latency, Instruction Per Cycle (IPC) and Total
Cycles—with the ECPT system and the x86-64 system,
running EMT-Linux. All results are normalized to those of
the x86-64 system as the baselines.

Effectiveness of Optimizations. EMT exposes optimization
opportunities for MMU drivers using customizable functions.
Figure 17 uses flame graphs to show the effectiveness of
iterator optimization running GraphBIG BFS with THP. With
the iterator optimization (§6.2), ECPT can save 49.0% of
total kernel work, and 52.5% of the page fault handling work.
The optimization drastically saves the work of hashing and
lookups of the architecture-neutral default implementation,
by incrementing the pointer to an entry directly, as long as
the entry is within an entry cluster (Figure 12). Note that
such kernel work as software overhead cannot benefit from
hardware caches such as TLBs or PWCs.

8.5 Hardware Simulation
8.5.1 ECPT
EMT’s emulator toolchain provides an open platform of hard-
ware simulation for experimental architectures where silicon
implementations are not available. To demonstrate this, we
run hardware simulations for EMT-Linux with the x86-64
radix and ECPT MMU drivers using the DynamoRIO simula-
tor [41]. We use the hardware configuration described in the
ECPT paper [98]. For PWC configuration, we follow more
recent works [77, 111] to use 3 levels of PWC with 2-4-32
entries per level. We use the macro benchmarks and the three
application workloads described in §8.1.

Traditional Hardware Metrics. Our toolchain measures tra-
ditional hardware metrics, namely Page Table Walk Latency
and Instructions Per Cycle (IPC), which are considered key
performance metrics of hardware translation architectures
(see [87, 98]). As shown in Figures 18a and 18b, ECPT has
significant performance advantages over x86-64 (Radix). On
average, ECPT speeds up page table walks by 23.1%, and

12



increases IPC by 7.0%. For most benchmarks, ECPT shows
nontrivial page table walk and IPC speedups, as it directly
accesses the last-level PTEs. The only exception is Sysbench
whose workload has a high PWC hit rate of 99.8% at the
PMD level on x86-64, i.e., the x86-64 page table walks skip
most intermediate steps and directly accesses last-level PTEs;
meanwhile, ECPT pays extra cycles for hash computation
in addition to CWC accesses, so it slightly slows down Sys-
bench’s page table walk by 2.2%

New Metrics with OS Overhead. We find that IPC, which
measures instruction throughput, does not fully reflect applica-
tion runtime—though ECPT increases IPC, our ECPT MMU
driver introduces more kernel instructions than the x86-64
MMU driver (§8.4). Hence, we measure the total cycles for
running macro benchmarks and applications, including the
OS overhead (mostly page-fault handling as shown in Fig-
ure 16). Figure 18c shows that, on average, the ECPT system
reduces total cycles by 2.3% across the workloads. GUPS and
Memcached show major benefits, where the ECPT system
reduces the total cycles by 11.5% and 12.9%, because page
table walks account for over 66% of their execution time.

The aforementioned analysis shows that the OS can play
an important role in application performance, which could
be overlooked with hardware metrics. Without building the
OS memory management, it is hard to evaluate OS overhead
accurately. Prior work assumed that OS overhead is constant
under different memory-translation architectures. In the ini-
tial modeling, the memory trace is collected from running
benchmarks on vanilla Linux on x86-64; the trace is then
replayed in a simulator of ECPT MMU. As shown in §8.4,
memory translation architectures can have profound implica-
tions for OS performance. EMT aims to enable OS experience
for new translation architectures. We believe that EMT effec-
tively lowers the barrier to implement OS support for new
memory-translation architectures by making the kernel devel-
opers focus on MMU driver implementations.

IPC as a metric aligns with application’s execution time
when OS overhead is minimal. All the evaluated workloads
have two phases: a loading phase that loads data from the disk
to memory, and a running phase that runs the computation or
serves user requests. The running phase involves less kernel
work with kernel instructions accounting for less than 1.3% of
the total instructions. With only the running phase considered,
ECPT improves IPC by 7.5% and reduces total cycles by
6.6% compared to the x86-64 system (Figure 18d).

The results could be different with different hardware simu-
lators. We expect the impact of kernel instructions to become
smaller when using SST [94] which models OoO execution
more precisely. The SST evaluation remains future work.

8.5.2 FPT
We start with a FPT configuration that flattens L3+L2 tables
(see Figure 1) which was implemented by the original OS

(a) Page table walk latency (b) IPC

(c) Total cycles (d) Total cycles (running phase)

Figure 19: Hardware simulation results of the FPT system
and the x86-64 system, running EMT-Linux. All results
are normalized to those of the x86-64 system as the baselines.

prototype [87]. Our evaluation shows that the benefit of flat-
tening L3+L2 is limited: only L3 entries were saved, which
were cached effectively in x86-64. As shown in Figures 19a,
19b, 19c, compared with Linux on x86-64 (baseline), on aver-
age, the FPT-based system speeds up page table walk latency
by 5.5%, IPC by 1.0%, and the total cycles by 1.1%.

We then implemented the FPT configuration that flattens
both L4+L3 and L2+L1. This configuration was not imple-
mented in [87] due to its difficulties of supporting 2MB huge
pages. We implemented a 4KB-only version and evaluated
it with only 4KB base pages (no huge page). With this con-
figuration, compared with Linux on x86-64, the FPT-based
system speeds up page table walk latency by 15.3%, IPC by
3.6%, and total cycles by 3.7% (Figures 19a, 19b, and 19c).

Flattening both L4+L3 and L2+L1 in FPT yields perfor-
mance comparable to ECPT in the running phase. Compared
with radix, ECPT and FPT reduce total cycles by 6.6% and
6.4%, respectively (Figures 18d and 19d). For hardware met-
rics (page table walk latency and IPC), the FPT-based system
matched ECPT-based system’s performance: ECPT is only
faster than FPT by 2.4% in page table walk latency and 0.4%
in IPC. On the other hand, ECPT inherently supports huge
pages of varying sizes, unlike this FPT configuration.

9 Experience and Lessons Learned
Developing EMT-Linux and the MMU drivers together with
the emulated MMU took extensive engineering efforts. Specif-
ically, we had to develop interacting moving parts across the
hardware-software boundary.

A key principle is to enable incremental, contiguous en-
gineering practice. For example, when implementing ECPT,
our first milestone is to write a basic per-process hashed page
table (BHPT) using EMT, without features like collision reso-
lution, elastic resizing, CWT/CWC, etc. We implement BHPT
logic in both EMT-Linux and the MMU and have a running

13



system that only supports a tiny microbenchmark. Despite
being basic, the running system serves as a foundation for
gradually adding features and eventually evolving into a full-
fledged system. For features that need both hardware and
software support, we start from the hardware, which typically
has simpler logic and mostly reads translation data.

We continuously test and evaluate our system, not only
for correctness (§8.2) but also for performance. Continuous
profiling helped us quickly observe performance regression
over vanilla Linux; when developing ECPT, profiling helped
us identify major inefficiencies compared to the radix-page-
table-based system. We developed the instruction analysis
with flame graphs [55] in our emulator toolchain. and use
them extensively. We also added GDB support for the ECPT-
based system (QEMU’s GDB was hardcoded with radix).

We largely reuse the existing Linux compiler toolchain to
keep the effort manageable. We leverage x86’s model-specific
registers (MSR) [19] as the control registers for ECPT, which
is supported by GCC (x86’s read/write MSR instruction al-
lows access to arbitrary MSR with a 32-bit identifier). We use
Clang’s static analysis tools (e.g., clang-query [18]) to search
for error-prone code patterns during refactoring.

One mistake we made was to start from Linux’s boot-time
kernel page table [6, 8], which is legacy code without debug-
ging tools. Developing boot-time kECPT requires implemen-
tation in assembly and build mappings of kernel code/data
from a bootstrap address space. We spent four months to
understand the details of the boot-time kernel page table. Ret-
rospectively, we should have started from runtime kECPTs
(by switching the system to it after boot [7]) so we could
have a running system quicker to parallelize our efforts.

10 Related Work
As memory translation has become a major bottleneck of
emerging memory-hungry, irregular workloads such as gener-
ative models, graph analytics, and recommendation systems,
translation architecture has been an immensely active research
topic recently. Extensive efforts are made on new designs of
TLB [33, 86, 88, 89] and page walk caches [32, 40], and more
efficient huge page management [62, 69, 81, 84, 85].

To fundamentally resolve translation bottlenecks, recent
work [53, 56, 63, 98, 109] is actively rethinking translation
architectures; a common thread is to prioritize speed over
space efficiency (with abundant memory) and use fast lookup
structures to reduce tail latency (avoiding pointer chasing).

Memory translation architectures have profound implica-
tions on OS reliability and performance, but unfortunately
have not been well explored in prior work. EMT is designed to
enable development and evaluation of OS support for emerg-
ing translation architectures to formulate an OS perspective.

Note that memory management and its extensibility were
well studied in OS research [24, 38, 47, 67, 91] and are con-
tinuously revisited, driven by the growth of memory ca-

pacity and the heterogeneity introduced by memory tier-
ing [37, 61, 71, 78, 92, 103]. So far, extensibility refers to the
ability for user space to customize memory management fea-
tures, e.g., page fault handler. Few prior studies considered
extensibility in terms of empowering memory translation ar-
chitectures or studied their implications on OS performance.

We are inspired by machine-independent memory manage-
ment designs in Mach [91] and SunOS [50]. The goal of
EMT is to enable the OS development for emerging, experi-
mental memory translation architectures and demonstrate the
value with our experience. We attempted to simplify the EMT
interface, e.g., to a map interface [50, 91]; however, we find it
hard to balance architecture neutrality and low-level optimiza-
tions. One way is to add hints, but hints are not expressive for
passing information to different MMU drivers.

Virtuoso [64] is a recent hardware simulation framework
that considers OS overhead (mostly the overhead of page
fault handling) using an imitated MimicOS in the user space.
EMT and Virtuoso are fundamentally different but are comple-
mentary. Unlike Virtuoso which is designed for architecture-
centric simulations, EMT is an OS interface for enabling OS
developement and evaluation with regard to new translation
architectures. EMT benefits architecture designs from an OS
perspective by running real MMU drivers on Linux.

11 Concluding Remarks
EMT is an OS framework for developing and evaluating OS
memory management for new memory translation architec-
tures. Our work shows the importance of understanding hard-
ware translation schemes from the OS perspective. Specifi-
cally, we show that fast translation schemes like ECPT can
incur new challenges for the OS. We will release and make
EMT and the emulator toolchains as an open platform and
encourage new hardware architectures to experiment with
modern OSes. With the significant diversity of emerging work-
loads and increasing heterogeneity of interconnected memory
devices, it becomes harder to foresee a one-size-fits-all transla-
tion scheme. Hence, OS extensibility for different translation
schemes is critical to enable specialized translation. We hope
that EMT design starts a practical journey towards extensible
OS kernels for translation of heterogeneous devices.

Acknowledgement
We thank the anonymous reviewers, and our shepherd, Haggai
Eran, for their insightful comments. We thank Chloe Alverti,
Ren Wang, Andrea Arcangeli, Jinghao Jia, and Kaiyang Zhao
for their feedback and discussion. We are very grateful to
Shanbo Zhang and Rubin Du who helped prepare the EMT ar-
tifacts and earn the Reproducibility badge. We also thank
Divyam Arora, Logan Cudia, and Yuchen Tang for their
participation. This work was funded in part by NSF CNS-
1956007, CNS-2145295, CNS-2239311, CNS-2107307, an
IBM-Illinois Discovery Accelerator Institute (IIDAI) grant,
an Intel TSA grant, and an Intel SRS Award.

14



References
[1] Intel® IA-64 Architecture Software Developer’s Manual. ht
tp://refspecs.linux-foundation.org/IA64-softd
evman-vol2.pdf, July 2000.

[2] GraphBIG Dataset. https://github.com/graphbig/gr
aphBIG/wiki/GraphBIG-Dataset, Mar. 2015.

[3] 5-Level Paging and 5-Level EPT White Paper. https://so
ftware.intel.com/content/www/us/en/develop/d
ownload/5-level-paging-and-5-level-ept-white
-paper.html, May 2017.

[4] Features/SoftMMU. https://wiki.qemu.org/Features
/SoftMMU, Jan. 2018.

[5] QEMU: A generic and open source machine emulator and
virtualizer. http://www.qemu.org, June 2020.

[6] arch/x86/boot/compressed/head_64.S. https://github.c
om/torvalds/linux/blob/v5.15/arch/x86/boot/c
ompressed/head_64.S, Aug. 2021.

[7] arch/x86/kernel/cpu/common.c. https://github.com/t
orvalds/linux/blob/v5.15/arch/x86/kernel/cpu
/common.c, Oct. 2021.

[8] arch/x86/kernel/head64.c. https://github.com/torva
lds/linux/blob/v5.15/arch/x86/kernel/head64.c,
May 2021.

[9] Memory Management. https://www.kernel.org/doc/h
tml/v5.15/x86/x86_64/mm.html, Aug. 2021.

[10] Power ISA™ Version 3.1B. https://openpowerfoundat
ion.org/specifications/isa/, Sept. 2021.

[11] AMD64 Architecture Programmer’s Manual. https://www.
amd.com/content/dam/amd/en/documents/process
or-tech-docs/programmer-references/40332.pdf,
June 2023.

[12] Linux Test Project. https://github.com/linux-tes
t-project/ltp/tree/20230929, Sept. 2023.

[13] Machine address mapping definitions – machine-independent
section. https://github.com/freebsd/freebsd-src
/blob/release/14.0.0/sys/vm/pmap.h, Aug. 2023.

[14] Page migration. https://www.kernel.org/doc/html/
next/mm/page_migration.html, Aug. 2023.

[15] Split page table lock. https://www.kernel.org/doc
/html/next/mm/split_page_table_lock.html, Aug.
2023.

[16] Transparent Hugepage Support. https://docs.kernel.
org/admin-guide/mm/transhuge.html, Dec. 2023.

[17] Arm® Architecture Reference Manual for A-profile architec-
ture. https://developer.arm.com/documentation/
ddi0487/latest/, Mar. 2024.

[18] clang-query tool. https://github.com/llvm/llvm-pro
ject/tree/main/clang-tools-extra/clang-query,
Jan. 2024.

[19] Intel® 64 and IA-32 Architectures Developer’s Manual. http
s://www.intel.com/content/www/us/en/developer/
articles/technical/intel-sdm.html, Mar. 2024.

[20] Linux kernel coding style - The Linux Kernel documentation.
https://www.kernel.org/doc/html/v6.12/process/
coding-style.html#the-inline-disease, Sept. 2024.

[21] Memory Protection Keys. https://docs.kernel.org/co
re-api/protection-keys.html, Oct. 2024.

[22] Page Table Isolation (PTI). https://www.kernel.org/d
oc/html/next/x86/pti.html, Jan. 2024.

[23] QEMU TCG Plugins. https://www.qemu.org/docs/ma
ster/devel/tcg-plugins.html, Feb. 2024.

[24] ABROSSIMOV, E., ROZIER, M., AND SHAPIRO, M. Generic
Virtual Memory Management for Operating System Kernels.
In Proceedings of the 12th ACM Symposium on Operating
Systems Principles (SOSP ’89) (Nov. 1989).

[25] ACCETTA, M., BARON, R., BOLOSKY, W., GOLUB, D.,
RASHID, R., TEVANIAN, A., AND YOUNG, M. Mach: A
New Kernel Foundation For UNIX Development. In Pro-
ceedings of the 1986 Summer USENIX Technical Conference
(USENIX Summer ’86) (July 1986).

[26] AHN, J., JIN, S., AND HUH, J. Revisiting Hardware-Assisted
Page Walks for Virtualized Systems. In Proceedings of the
39th Annual International Symposium on Computer Architec-
ture (ISCA-39) (June 2012).

[27] ALAM, H., ZHANG, T., EREZ, M., AND ETSION, Y. Do-It-
Yourself Virtual Memory Translation. In Proceedings of the
44th Annual International Symposium on Computer Architec-
ture (ISCA-44) (June 2017).

[28] ALVERTI, C., PSOMADAKIS, S., KARAKOSTAS, V.,
GANDHI, J., NIKAS, K., GOUMAS, G., AND KOZIRIS,
N. Enhancing and Exploiting Contiguity for Fast Memory
Virtualization. In Proceedings of the 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA-47) (June
2020).

[29] ANDERSON, T. E., LEVY, H. M., BERSHAD, B. N., AND

LAZOWSKA, E. D. The Interaction of Architecture and Op-
erating System Design. In Proceedings of the Fourth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IV) (Apr. 1991).

[30] BALASUBRAMONIAN, R., KAHNG, A. B., MURALI-
MANOHAR, N., SHAFIEE, A., AND SRINIVAS, V. CACTI
7: New Tools for Interconnect Exploration in Innovative
Off-Chip Memories. ACM Transactions on Architecture and
Code Optimization (TACO) (2017).

[31] BARR, J. EC2 High Memory Update - New 18 TB and 24
TB Instances. https://aws.amazon.com/blogs/aws/e
c2-high-memory-update-new-18-tb-and-24-tb-i
nstances/, Oct. 2019.

[32] BARR, T. W., COX, A. L., AND RIXNER, S. Translation
Caching: Skip, Don’t Walk (the Page Table). In Proceedings
of the 37th Annual International Symposium on Computer
Architecture (ISCA-37) (June 2010).

[33] BARR, T. W., COX, A. L., AND RIXNER, S. SpecTLB:
A Mechanism for Speculative Address Translation. In Pro-
ceedings of the 38th Annual International Symposium on
Computer Architecture (ISCA-38) (Sept. 2011).

15

http://refspecs.linux-foundation.org/IA64-softdevman-vol2.pdf
http://refspecs.linux-foundation.org/IA64-softdevman-vol2.pdf
http://refspecs.linux-foundation.org/IA64-softdevman-vol2.pdf
https://github.com/graphbig/graphBIG/wiki/GraphBIG-Dataset
https://github.com/graphbig/graphBIG/wiki/GraphBIG-Dataset
https://software.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://software.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://software.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://software.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://wiki.qemu.org/Features/SoftMMU
https://wiki.qemu.org/Features/SoftMMU
http://www.qemu.org
https://github.com/torvalds/linux/blob/v5.15/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/v5.15/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/v5.15/arch/x86/boot/compressed/head_64.S
https://github.com/torvalds/linux/blob/v5.15/arch/x86/kernel/cpu/common.c
https://github.com/torvalds/linux/blob/v5.15/arch/x86/kernel/cpu/common.c
https://github.com/torvalds/linux/blob/v5.15/arch/x86/kernel/cpu/common.c
https://github.com/torvalds/linux/blob/v5.15/arch/x86/kernel/head64.c
https://github.com/torvalds/linux/blob/v5.15/arch/x86/kernel/head64.c
https://www.kernel.org/doc/html/v5.15/x86/x86_64/mm.html
https://www.kernel.org/doc/html/v5.15/x86/x86_64/mm.html
https://openpowerfoundation.org/specifications/isa/
https://openpowerfoundation.org/specifications/isa/
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/40332.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/40332.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/40332.pdf
https://github.com/linux-test-project/ltp/tree/20230929
https://github.com/linux-test-project/ltp/tree/20230929
https://github.com/freebsd/freebsd-src/blob/release/14.0.0/sys/vm/pmap.h
https://github.com/freebsd/freebsd-src/blob/release/14.0.0/sys/vm/pmap.h
https://www.kernel.org/doc/html/next/mm/page_migration.html
https://www.kernel.org/doc/html/next/mm/page_migration.html
https://www.kernel.org/doc/html/next/mm/split_page_table_lock.html
https://www.kernel.org/doc/html/next/mm/split_page_table_lock.html
https://docs.kernel.org/admin-guide/mm/transhuge.html
https://docs.kernel.org/admin-guide/mm/transhuge.html
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://github.com/llvm/llvm-project/tree/main/clang-tools-extra/clang-query
https://github.com/llvm/llvm-project/tree/main/clang-tools-extra/clang-query
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.kernel.org/doc/html/v6.12/process/coding-style.html#the-inline-disease
https://www.kernel.org/doc/html/v6.12/process/coding-style.html#the-inline-disease
https://docs.kernel.org/core-api/protection-keys.html
https://docs.kernel.org/core-api/protection-keys.html
https://www.kernel.org/doc/html/next/x86/pti.html
https://www.kernel.org/doc/html/next/x86/pti.html
https://www.qemu.org/docs/master/devel/tcg-plugins.html
https://www.qemu.org/docs/master/devel/tcg-plugins.html
https://aws.amazon.com/blogs/aws/ec2-high-memory-update-new-18-tb-and-24-tb-instances/
https://aws.amazon.com/blogs/aws/ec2-high-memory-update-new-18-tb-and-24-tb-instances/
https://aws.amazon.com/blogs/aws/ec2-high-memory-update-new-18-tb-and-24-tb-instances/


[34] BASU, A., GANDHI, J., CHANG, J., HILL, M. D., AND

SWIFT, M. M. Efficient Virtual Memory for Big Memory
Servers. In Proceedings of the 40th Annual International Sym-
posium on Computer Architecture (ISCA-40) (June 2013).

[35] BENDER, M. A., BHATTACHARJEE, A., CONWAY, A.,
FARACH-COLTON, M., JOHNSON, R., KANNAN, S., KUSZ-
MAUL, W., MUKHERJEE, N., PORTER, D., TAGLIAVINI, G.,
VOROBYEVA, J., AND WEST, E. Paging and the Address-
Translation Problem. In Proceedings of the 33rd ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA

’21) (July 2021).

[36] BENDER, M. A., CONWAY, A., FARACH-COLTON, M.,
KUSZMAUL, W., AND TAGLIAVINI, G. Iceberg Hashing:
Optimizing Many Hash-Table Criteria at Once. Journal of
the ACM 70, 6 (Nov. 2023), 1–55.

[37] BERGMAN, S., FALDU, P., GROT, B., VILANOVA, L., AND

SILBERSTEIN, M. Reconsidering OS Memory Optimizations
in the Presence of Disaggregated Memory. In Proceedings
of the 2022 ACM SIGPLAN International Symposium on
Memory Management (ISMM ’22) (June 2022).

[38] BERSHAD, B. N., SAVAGE, S., PARDYAK, P., SIRER, E. G.,
FIUCZYNSKI, M. E., BECKER, D., CHAMBERS, C., AND

EGGERS, S. Extensibility, Safety and Performance in the
SPIN Operating System. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP ’95)
(Dec. 1995).

[39] BHARGAVA, R., SEREBRIN, B., SPADINI, F., AND MANNE,
S. Accelerating Two-Dimensional Page Walks for Virtualized
Systems. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XIII) (Mar. 2008).

[40] BHATTACHARJEE, A. Large-reach Memory Management
Unit Caches. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-46)
(Dec. 2013).

[41] BRUENING, D. L. Efficient, Transparent, and Comprehen-
sive Runtime Code Manipulation. PhD thesis, Massachusetts
Institute of Technology, Sept. 2004.

[42] CARTER, N. P., KECKLER, S. W., AND DALLY, W. J. Hard-
ware Support for Fast Capability-based Addressing.

[43] CORBET, J. Five-level page tables. https://lwn.net/Ar
ticles/717293/, Mar. 2017.

[44] CORBET, J. The final step for huge-page swapping. https:
//lwn.net/Articles/758677/, July 2018.

[45] CRANOR, C. D., AND PARULKAR, G. M. The UVM Virtual
Memory System. In Proceedings of the 1999 USENIX Annual
Technical Conference (USENIX ’99) (June 1999).

[46] DOUGAN, C., MACKERRAS, P., AND YODAIKEN, V. Opti-
mizing the Idle Task and Other MMU Tricks. In Proceedings
of the 3rd Symposium on Operating Systems Design and Im-
plementation (OSDI ’99) (Feb. 1999).

[47] ENGLER, D. R., GUPTA, S. K., AND KAASHOEK, M. F.
AVM: Application-Level Virtual Memory. In Proceedings
of the 5th Workshop on Hot Topics in Operating Systems
(HotOS-V) (May 1995).

[48] GANDHI, J., HILL, M. D., AND SWIFT, M. M. Agile Pag-
ing: Exceeding the Best of Nested and Shadow Paging. In
Proceedings of the 43nd Annual International Symposium on
Computer Architecture (ISCA-43) (June 2016).

[49] GHOSE, S., BOROUMAND, A., KIM, J. S., GÓMEZ-LUNA,
J., AND MUTLU, O. Processing-in-memory: A workload-
driven perspective. IBM Journal of Research and Develop-
ment 63, 6 (Aug. 2019), 3:1–3:19.

[50] GINGELL, R. A., MORAN, J. P., AND SHANNON, W. A.
Virtual Memory Architecture in SunOS. In Proceedings of
the 1987 Summer USENIX Technical Conference (USENIX
Summer ’87) (June 1987).

[51] GOOCH, R., AND ENBERG, P. Overview of the Linux Virtual
File System. https://www.kernel.org/doc/html/ne
xt/filesystems/vfs.html, Feb. 2024.

[52] GOOGLE CLOUD. Memory-optimized machine family for
Compute Engine. https://cloud.google.com/compute
/docs/memory-optimized-machines, Apr. 2024.

[53] GOSAKAN, K., HAN, J., KUSZMAUL, W., MUBAREK, I. N.,
MUKHERJEE, N., SRIRAM, K., TAGLIAVINI, G., WEST,
E., BENDER, M. A., BHATTACHARJEE, A., CONWAY, A.,
FARACH-COLTON, M., GANDHI, J., JOHNSON, R., KAN-
NAN, S., AND PORTER, D. E. Mosaic Pages: Big TLB Reach
with Small Pages. In Proceedings of the 28th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’23) (Mar. 2023).

[54] GRAY, C., CHAPMAN, M., CHUBB, P., MOSBERGER-TANG,
D., AND HEISER, G. Itanium – A System Implementor’s
Tale. In Proceedings of the 2005 USENIX Annual Technical
Conference (USENIX ’05) (Apr. 2005).

[55] GREGG, B. CPU Flame Graphs. https://www.brendang
regg.com/FlameGraphs/cpuflamegraphs.html, Aug.
2021.

[56] GUPTA, S., BHATTACHARYYA, A., OH, Y., BHATTACHAR-
JEE, A., FALSAFI, B., AND PAYER, M. Rebooting Virtual
Memory with Midgard. In Proceedings of the 48th Annual In-
ternational Symposium on Computer Architecture (ISCA-48)
(June 2021).

[57] HOANG, G., BAE, C., LANGE, J., ZHANG, L., DINDA, P.,
AND JOSEPH, R. A Case for Alternative Nested Paging
Models for Virtualized Systems. IEEE Computer Architecture
Letters 9, 1 (Jan. 2010), 17–20.

[58] HPC CHALLENGE BENCHMARK. RandomAccess: GUPS
(Giga Updates Per Second). https://hpcchallenge.o
rg/projectsfiles/hpcc/RandomAccess.html, Aug.
2022.

[59] HUANG, J., QURESHI, M. K., AND SCHWAN, K. An Evo-
lutionary Study of Linux Memory Management for Fun and
Profit. In Proceedings of the 2016 USENIX Annual Technical
Conference (USENIX ATC ’16) (June 2016).

[60] HUCK, J., AND HAYS, J. Architectural Support For Transla-
tion Table Management In Large Address Space Machines.
In Proceedings of the 20th Annual International Symposium
on Computer Architecture (ISCA-20) (May 1993).

16

https://lwn.net/Articles/717293/
https://lwn.net/Articles/717293/
https://lwn.net/Articles/758677/
https://lwn.net/Articles/758677/
https://www.kernel.org/doc/html/next/filesystems/vfs.html
https://www.kernel.org/doc/html/next/filesystems/vfs.html
https://cloud.google.com/compute/docs/memory-optimized-machines
https://cloud.google.com/compute/docs/memory-optimized-machines
https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://hpcchallenge.org/projectsfiles/hpcc/RandomAccess.html
https://hpcchallenge.org/projectsfiles/hpcc/RandomAccess.html


[61] JALALIAN, S., PATEL, S., HAJIDEHI, M. R., SELTZER, M.,
AND FEDOROVA, A. ExtMem: Enabling Application-Aware
Virtual Memory Management for Data-Intensive Applica-
tions. In Proceedings of the 2024 USENIX Annual Technical
Conference (USENIX ATC ’24) (July 2024).

[62] JIA, W., ZHANG, J., SHAN, J., DU, Y., DING, X., AND XU,
T. HugeGPT: Storing Guest Page Tables on Host Huge Pages
to Accelerate Address Translation. In Proceedings of the
32nd International Conference on Parallel Architectures and
Compilation Techniques (PACT’23) (Oct. 2023).

[63] KANELLOPOULOS, K., BERA, R., STOJILJKOVIC, K.,
BOSTANCI, F. N., FIRTINA, C., AUSAVARUNGNIRUN, R.,
KUMAR, R., HAJINAZAR, N., SADROSADATI, M., VI-
JAYKUMAR, N., AND MUTLU, O. Utopia: Fast and Efficient
Address Translation via Hybrid Restrictive & Flexible Virtual-
to-Physical Address Mappings. In Proceedings of the 56th
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO-56) (Oct. 2023).

[64] KANELLOPOULOS, K., SGOURAS, K., BOSTANCI, F. N.,
KAKOLYRIS, A. K., KONAR, B. K., BERA, R., SADROSA-
DATI, M., KUMAR, R., VIJAYKUMAR, N., AND MUTLU, O.
Virtuoso: Enabling Fast and Accurate Virtual Memory Re-
search via an Imitation-based Operating System Simulation
Methodology. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS’25) (Mar 2025).

[65] KARAKOSTAS, V., GANDHI, J., AYAR, F., CRISTAL, A.,
HILL, M. D., MCKINLEY, K. S., NEMIROVSKY, M., SWIFT,
M. M., AND ÜNSAL, O. Redundant Memory Mappings for
Fast Access to Large Memories. In Proceedings of the 42rd
Annual International Symposium on Computer Architecture
(ISCA-42) (June 2015).

[66] KOPYTOV, A. SysBench: Scriptable database and system
performance benchmark. https://github.com/akopyto
v/sysbench/tree/1.0.20, Apr. 2020.

[67] KRUEGER, K., LOFTESNESS, D., VAHDAT, A., AND AN-
DERSON, T. Tools for the Development of Application Spe-
cific Virtual Memory Management. In Proceedings of the
Eighth Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ’93) (Sept.
1993).

[68] KWON, O., LEE, Y., PARK, J., JANG, S., TAK, B., AND

HONG, S. Distributed Page Table: Harnessing Physical Mem-
ory as an Unbounded Hashed Page Table. In Proceedings
of the 57th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-57) (Oct. 2024).

[69] KWON, Y., YU, H., PETER, S., ROSSBACH, C. J., AND

WITCHEL, E. Coordinated and Efficient Huge Page Man-
agement with Ingens. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI ’16) (Nov. 2016).

[70] LEVY, H. M., AND LIPMAN, P. H. Virtual Memory Manage-
ment in the VAX/VMS Operating System. IEEE Computer
15, 3 (Mar. 1982), 35–41.

[71] LI, H., BERGER, D. S., HSU, L., ERNST, D., ZARDOSHTI,
P., NOVAKOVIC, S., SHAH, M., RAJADNYA, S., LEE, S.,

AGARWAL, I., HILL, M. D., FONTOURA, M., AND BIAN-
CHINI, R. Pond: CXL-Based Memory Pooling Systems for
Cloud Platforms. In Proceedings of the 28th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’23) (Mar. 2023).

[72] Memory Type Range Registers in Linux Kernel. https:
//docs.kernel.org/arch/x86/mtrr.html.

[73] Paravirtualization in Linux Kernel. https://docs.kerne
l.org/virt/paravirt_ops.html.

[74] Page Attribute Table in Linux Kernel. https://docs.ker
nel.org/next/x86/pat.html.

[75] pv_ops.mmu in linux kernel. https://elixir.bootlin
.com/linux/v5.15/source/arch/x86/kernel/para
virt.c#L290.

[76] MAGNUSSON, P., CHRISTENSSON, M., ESKILSON, J.,
FORSGREN, D., HALLBERG, G., HOGBERG, J., LARSSON,
F., MOESTEDT, A., AND WERNER, B. Simics: A Full Sys-
tem Simulation Platform. IEEE Computer 35, 2 (Feb. 2002),
50–58.

[77] MARGARITOV, A., USTIUGOV, D., BUGNION, E., AND

GROT, B. Prefetched Address Translation. In Proceedings
of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-52) (Oct. 2019).

[78] MARUF, H. A., WANG, H., DHANOTIA, A., WEINER,
J., AGARWAL, N., BHATTACHARYA, P., PETERSEN, C.,
CHOWDHURY, M., KANAUJIA, S., AND CHAUHAN, P.
TPP: Transparent Page Placement for CXL-Enabled Tiered-
Memory. In Proceedings of the 28th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’23) (Mar. 2023).

[79] MERRIFIELD, T., AND TAHERI, H. R. Performance Implica-
tions of Extended Page Tables on Virtualized x86 Processors.
In Proceedings of the 12th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments (VEE

’16) (Apr. 2016).

[80] NAI, L., XIA, Y., TANASE, I. G., KIM, H., AND LIN, C.-Y.
GraphBIG: Understanding Graph Computing in the Context
of Industrial Solutions. In Proceedings of SC15: The In-
ternational Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’15) (Nov. 2015).

[81] NAVARRO, J., IYER, S., DRUSCHEL, P., AND COX, A. Prac-
tical, Transparent Operating System Support for Superpages.
In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI ’02) (Dec. 2002).

[82] Paging in OSDev Wiki. https://wiki.osdev.org/Pag
ing.

[83] PAGH, R., AND RODLER, F. F. Cuckoo Hashing. Journal of
Algorithms 51, 2 (May 2004), 122–144.

[84] PANWAR, A., BANSAL, S., AND GOPINATH, K. HawkEye:
Efficient Fine-grained OS Support for Huge Pages. In Pro-
ceedings of the 24th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS ’19) (Apr. 2019).

17

https://github.com/akopytov/sysbench/tree/1.0.20
https://github.com/akopytov/sysbench/tree/1.0.20
https://docs.kernel.org/arch/x86/mtrr.html
https://docs.kernel.org/arch/x86/mtrr.html
https://docs.kernel.org/virt/paravirt_ops.html
https://docs.kernel.org/virt/paravirt_ops.html
https://docs.kernel.org/next/x86/pat.html
https://docs.kernel.org/next/x86/pat.html
https://elixir.bootlin.com/linux/v5.15/source/arch/x86/kernel/paravirt.c#L290
https://elixir.bootlin.com/linux/v5.15/source/arch/x86/kernel/paravirt.c#L290
https://elixir.bootlin.com/linux/v5.15/source/arch/x86/kernel/paravirt.c#L290
https://wiki.osdev.org/Paging
https://wiki.osdev.org/Paging


[85] PANWAR, A., PRASAD, A., AND GOPINATH, K. Making
Huge Pages Actually Useful. In Proceedings of the 23rd
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’18)
(Mar. 2018).

[86] PARK, C. H., HEO, T., JEONG, J., AND HUH, J. Hybrid
TLB Coalescing: Improving TLB Translation Coverage under
Diverse Fragmented Memory Allocations. In Proceedings
of the 44th Annual International Symposium on Computer
Architecture (ISCA-44) (June 2017).

[87] PARK, C. H., VOUGIOUKAS, I., SANDBERG, A., AND

BLACK-SCHAFFER, D. Every Walk’s a Hit: Making Page
Walks Single-Access Cache Hits. In Proceedings of the 27th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’22)
(Feb. 2022).

[88] PHAM, B., BHATTACHARJEE, A., ECKERT, Y., AND LOH,
G. H. Increasing TLB Reach by Exploiting Clustering in
Page Translations. In Proceedings of the 20th IEEE Interna-
tional Symposium on High-Performance Computer Architec-
ture (HPCA-20) (Feb. 2014).

[89] PHAM, B., VAIDYANATHAN, V., JALEEL, A., AND BHAT-
TACHARJEE, A. CoLT: Coalesced Large-Reach TLBs. In
Proceedings of the 45th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-45) (Dec. 2012).

[90] PIGGIN, N. page table iterators. https://lwn.net/Arti
cles/124037/, Feb. 2005.

[91] RASHID, R., TEVANIAN, A., YOUNG, M., GOLUB, D.,
BARON, R., BLACK, D., BOLOSKY, W., AND CHEW, J.
Machine-Independent Virtual Memory Management for
Paged Uniprocessor and Multiprocessor Architectures. In
Proceedings of the Second International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS-II) (Oct. 1987).

[92] RAYBUCK, A., STAMLER, T., ZHANG, W., EREZ, M., AND

PETER, S. HeMem: Scalable Tiered Memory Management
for Big Data Applications and Real NVM. In Proceedings of
the 28th ACM Symposium on Operating Systems Principles
(SOSP ’21) (Oct. 2021).

[93] REN, X. J., RODRIGUES, K., CHEN, L., VEGA, C., STUMM,
M., AND YUAN, D. An Analysis of Performance Evolution
of Linux’s Core Operations. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP ’19) (Oct.
2019).

[94] RODRIGUES, A., HEMMERT, K. S., BARRETT, B. W.,
KERSEY, C., OLDFIELD, R., WESTON, M., RIESEN, R.,
COOK, J., ROSENFELD, P., COOPER-BALIS, E., AND JA-
COB, B. The Structural Simulation Toolkit. ACM SIGMET-
RICS Performance Evaluation Review 38, 4 (Mar. 2011), 37–
42.

[95] RYOO, J. H., GULUR, N., SONG, S., AND JOHN, L. K. Re-
thinking TLB Designs in Virtualized Environments: A Very
Large Part-of-Memory TLB. In Proceedings of the 44th
Annual International Symposium on Computer Architecture
(ISCA-44) (June 2017).

[96] SHARMA, D. D. Compute Express Link (CXL): Enabling
Heterogeneous Data-Centric Computing With Heterogeneous
Memory Hierarchy. IEEE Micro 43, 2 (Mar. 2023), 99–109.

[97] SHUTEMOV, K. A. mm: convert generic code to 5-level
paging. https://github.com/torvalds/linux/comm
it/c2febafc67734a62196c1b9dfba926412d4077ba,
Mar. 2017.

[98] SKARLATOS, D., KOKOLIS, A., XU, T., AND TORRELLAS,
J. Elastic Cuckoo Page Tables: Rethinking Virtual Mem-
ory Translation for Parallelism. In Proceedings of the 25th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’20)
(Mar. 2020).

[99] STOJKOVIC, J., MANTRI, N., SKARLATOS, D., XU, T., AND

TORRELLAS, J. Memory-Efficient Hashed Page Tables. In
Proceedings of the 29th IEEE International Symposium on
High-Performance Computer Architecture (HPCA-29) (Feb.
2023).

[100] STOJKOVIC, J., SKARLATOS, D., KOKOLIS, A., XU, T.,
AND TORRELLAS, J. Parallel Virtualized Memory Transla-
tion with Nested Elastic Cuckoo Page Tables. In Proceedings
of the 27th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS ’22) (Feb. 2022).

[101] SUCHY, B., CAMPANONI, S., HARDAVELLAS, N., AND

DINDA, P. CARAT: A Case for Virtual Memory through
Compiler- and Runtime-Based Address Translation. In Pro-
ceedings of the 41st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’20) (June
2020).

[102] SUCHY, B., GHOSH, S., KERSNAR, D., CHAI, S., HUANG,
Z., NELSON, A., CUEVAS, M., BERNAT, A., CHAUDHARY,
G., HARDAVELLAS, N., CAMPANONI, S., AND DINDA, P.
CARAT CAKE: Replacing Paging via Compiler/Kernel Co-
operation. In Proceedings of the 27th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’22) (Feb. 2022).

[103] TABATABAI, B., SORENSON, J., AND SWIFT, M. M. FBMM:
Making Memory Management Extensible With Filesystems.
In Proceedings of the 2024 USENIX Annual Technical Con-
ference (USENIX ATC ’24) (July 2024).

[104] TALLURI, M., HILL, M. D., AND KHALID, Y. A. A New
Page Table for 64-bit Address Spaces. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles
(SOSP ’95) (Dec. 1995).

[105] TORVALDS, L. Re: [Lse-tech] Re: 10.31 second kernel com-
pile. https://yarchive.net/comp/linux/page_tab
les.html, Mar. 2002.

[106] VOUGIOUKAS, I. How about a short walk? https://comm
unity.arm.com/arm-research/b/articles/posts/h
ow-about-a-short-walk, Mar. 2022. ARM Blogs.

[107] WOODRUFF, J., WATSON, R. N. M., CHISNALL, D.,
MOORE, S. W., ANDERSON, J., DAVIS, B., LAURIE, B.,
NEUMANN, P. G., NORTON, R., AND ROE, M. The CHERI
capability model: Revisiting RISC in an age of risk. In Pro-
ceedings of the 41st Annual International Symposium on Com-
puter Architecture (ISCA-41) (June 2014).

18

https://lwn.net/Articles/124037/
https://lwn.net/Articles/124037/
https://github.com/torvalds/linux/commit/c2febafc67734a62196c1b9dfba926412d4077ba
https://github.com/torvalds/linux/commit/c2febafc67734a62196c1b9dfba926412d4077ba
https://yarchive.net/comp/linux/page_tables.html
https://yarchive.net/comp/linux/page_tables.html
https://community.arm.com/arm-research/b/articles/posts/how-about-a-short-walk
https://community.arm.com/arm-research/b/articles/posts/how-about-a-short-walk
https://community.arm.com/arm-research/b/articles/posts/how-about-a-short-walk


[108] YAN, Z., LUSTIG, D., NELLANS, D., AND BHATTACHAR-
JEE, A. Nimble Page Management for Tiered Memory Sys-
tems. In Proceedings of the 24th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’19) (Apr. 2019).

[109] YANIV, I., AND TSAFRIR, D. Hash, Don’t Cache (the Page
Table). In Proceedings of the 2016 ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’16) (June 2016).

[110] YE, H. Introduction to 5-Level Paging in 3rd Gen Intel Xeon
Scalable Processors with Linux. https://lenovopress.
lenovo.com/lp1468.pdf, May 2021.

[111] ZHANG, J., JIA, W., CHAI, S., LIU, P., KIM, J., AND XU,
T. Direct Memory Translation for Virtualized Clouds. In
Proceedings of the 29th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS ’24) (Apr. 2024).

[112] ZHOU, D., FAN, B., LIM, H., KAMINSKY, M., AND ANDER-
SEN, D. G. Scalable, High Performance Ethernet Forwarding
with CuckooSwitch. In Proceedings of the 9th ACM Confer-
ence on Emerging Networking Experiments and Technologies
(CoNEXT ’13) (Dec. 2013).

[113] ZUO, P., HUA, Y., AND WU, J. Write-Optimized and High-
Performance Hashing Index Scheme for Persistent Memory.
In Proceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’18) (Oct. 2018).

19

https://lenovopress.lenovo.com/lp1468.pdf
https://lenovopress.lenovo.com/lp1468.pdf

	Introduction
	Background
	Memory Translation Hardware
	OS Memory Management

	The Need for a New OS Framework
	EMT Design
	EMT API
	Basic Functions
	Customizable Functions

	Generality

	EMT-Linux with x86-64 MMU Drivers
	ECPT on EMT-Linux
	Emulator-based Toolchain
	ECPT MMU Driver

	Reflection on ECPT Design
	Managing Kernel Page Tables
	Implications on OS Performance

	Evaluation
	Methodology
	Functional Correctness
	EMT Interface Overhead
	OS Performance on ECPT
	Hardware Simulation
	ECPT
	black FPT


	Experience and Lessons Learned
	Related Work
	Concluding Remarks

