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Microservices

o Large monolithic applications decomposed into many small
interdependent services

o Each service implements separate functionality
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Benefits of Microservices

o Scalability v
o Design simplicity

o HW management v



Microservices are Widely Used

Ire Actual Architecture

: simplified and actual scheme (source)

Structure of microservices at Amazon. Looks almost like a Death Star but is way more powerful. 5



Datacenter Tax Dominates Execution
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Datacenter Tax Dominates Execution
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Datacenter Tax Dominates Execution
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Datacenter Tax Dominates Execution
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Datacenter Tax Dominates Execution

DeathStarBench Services
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Datacenter Tax Reported by Major Hyperscalers

Google 2015 Facebook 2020
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Figure 3: High-Level Application-Level Cycle Breakdown



Many Proposals for Individual Accelerators
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Many Proposals for Individual Accelerators
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How to Orchesirate Many Accelerators?

o Many individual accelerators proposed — how to manage theme
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Orchestrate Many Accelerators: CPU-Centric

Initiate
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Orchestrate Many Accelerators: CPU-Centric

Interrupt
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Orchestrate Many Accelerators: CPU-Centric

Inifiate
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Orchestrate Many Accelerators: CPU-Centric

Interrupt LLLLL
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Repeated Interrupts > High Overhead

Fraction of fime spent orchestrating accelerators
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Orchestrate Many Accelerators: Direct Chain
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Orchestrate Many Accelerators: Direct Chain

Initiate
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Orchestrate Many Accelerators: Direct Chain
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Orchestrate Many Accelerators: Direct Chain
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Direct Chaining Significantly Reduces Overheads
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Challenges of Direct Chaining

o Conftrol-flow divergences

28



Challenges of Direct Chaining

o Conftrol-flow divergences
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Challenges of Direct Chaining

o Conftrol-flow divergences
o Data format fransformations

S’rrlng JSON

30



AccelFlow: Accelerator Orchestration Framework

Processor package
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AccelFlow: Accelerator Orchestration Framework

Processor package
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AccelFlow: Accelerator Orchestration Framework

Processor package
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AccelFlow: Accelerator Orchesiration Framework

o Ensemble of accelerators
o Direct inter-accelerator
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AccelFlow: Accelerator Orchestration Framework

Processor package
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Input Dispatcher

o Schedules the requests from
Input Queue to PEs

o Fetches large input payloads
from memory

o Simple Finite State Machine
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Ouvutput Dispatcher
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Programming AccelFlow

o AccelFlow API allows programmers
to construct new traces:

o Define a linear chain of
accelerators

from AFlow import Trace, seq, branch, transform

trace = Trace() # Define trace

lpipeline = seq( # Compose trace

"TCP", "Decr", "RPC", "Dser",

branch (condition_op="out [’ compressed’] == 1",
on_true=seqg(trans ("JSON", "str"), "Dcmp"),
on_false=None),

"LdB")

Trace.pulla(piperine) 7 Attach piperine to ctrace —

trace.register (name="func_req") # Register trace
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Programming AccelFlow

o AccelFlow API allows programmers
to construct new traces:

o Define a linear chain of
accelerators

o Add a conditional conftrol flow

from AFlow import Trace, seq, branch, transform

trace = Trace() # Define trace
pipeline = seq( # Compose trace
"TCP " "Decrll "RPCII "Dser" ,

branch (condition_op="out [’ compressed’] == 1",
on_true=seqg(trans ("JSON", "str"),
on_false=None),

"Dcmp") ,

"LdB " )
trace.build(pipeline)
trace.register (name="func_req")

# Attach pipeline to trace
# Register trace
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Programming AccelFlow

o AccelFlow API allows programmers
to construct new traces:

o Define a linear chain of
accelerators

o Add a conditional conftrol flow

o Transform the format of the
data from one representation
to another

from AFlow import Trace, seq, branch, transform
trace = Trace() # Define trace
pipeline = seq( # Compose trace
"TCP", "Decr", "RPC", "Dser",
branch (condition ="
on_true=seqgj(trans ("JSON",
on_false=Normney),
"LdB")
trace.build(pipeline)
trace.register (name="func_req")

== W
’

"str") 0 "DcmP") 0

# Attach pipeline to trace
# Register trace

40




AccelFlow Summary

o Many on-chip accelerators to reduce datacenter tax
o Accelerators communicate directly with each other
o Small hardware engines

o Schedule requests onto accelerator PEs

o Compute branch conditions

o Perform simple data transformations

Pass do’rlo to CPU

Receive [ Y

response

@ to aread ‘ TCP H Decr H Dser |—>< Hite /L,/ Compressed? >
to the DB
cache N

Ser p{ Encr p{ TCP¥|
\ I

|
Send request to DB

4]



Evaluation Methodology

O Cycle-accurate full-system simulations: SST + QEMU
O DeathStarBench services with Alibaba’s production invocation fraces
O Systems evaluated

O CPU-centric: accelerators orchestrated by CPU cores

O RELIEF (HPCA’24): accelerators orchestrated by a dedicated and
centralized hardware manager

O Cohort (ASPLOS’23): links pairs of accelerators that frequently go together,
but otherwise relies on the cores to orchestrate the accelerators

O AccelFlow: our proposal
42



AccelFlow Significantly Reduces Tail Latency
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AccelFlow Significantly Reduces Tail Latency
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AccelFlow Significantly Reduces Tail Latency
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AccelFlow Significantly Reduces Tail Latency
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AccelFlow Reduces Average Latency
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AccelFlow Improves Throughput
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O An ensemble of domain-specific accelerators for "datacenter tax”
has the potential to improve the efficiency of microservices

O Redalizing these benefits requires an orchestration framework that
can keep up with the fine-grained and dynamic microservices

O AccelFlow: the first accelerator-orchestration framework for on-
chip accelerators targefing microservices

O 70% lower tail latency
O 38% lower average latency

O 2.2x higher throughput 50
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