ntel)

AccelFlow: Orchesirating an On-Package

Ensemble of Fine-Grained Accelerators for
Microservices

HPCA 2026, Sydney, Australia

Jovan Stojkovic*, Abraham Farrell, Zhangxiaowen Gong', Christopher
J. Hughest, Josep Torrellas

University of lllinois at Urbana-Champaign, Tintel, *Joining UT Austin in Fall 2026

The Growth of Cloud Computing

New Computing Paradigms: docker <F? (f)
* Microservices E E E E
- Serverless or Function-as-a-Service (Faas) EEEE """]
O IIIIII B B+
08— a
(1Qf Y — PUblic Clouds 7
O O IBM Cloud
Yo —>
- ENE

Microservices

o Large monolithic applications decomposed into many small
interdependent services

o Each service implements separate functionality

UsrMnt SGraph]
NGINX (C e l
[Frontend]_i OFF%F;;DSG Text Co%he H Database]
: Unigueld] HomeT UriShort]

Benefits of Microservices

o Scalability v
o Design simplicity

o HW management v

Microservices are Widely Used

Ire Actual Architecture

: simplified and actual scheme (source)

Structure of microservices at Amazon. Looks almost like a Death Star but is way more powerful. 5

Datacenter Tax Dominates Execution

DeathStarBench Services
100

Total Execution Time [%)]
N o (00)
(@) (@) (@)

N
(@)

Average Service
¥ ApplLogic 6

o

Datacenter Tax Dominates Execution

DeathStarBench Services

100

(0]
o

o
o

N
o

Total Execution Time [%)]
N
(@)

o

%
Average Service

v ApplLogic mTCP 7

Datacenter Tax Dominates Execution

DeathStarBench Services
100

(0]
o

o
o

N
o

Total Execution Time [%)]
N
(@)

o

%
Average Service

AppLogic mTCP ' (De)Encr 8

Datacenter Tax Dominates Execution

DeathStarBench Services
100

(0]
o

o
o

N
o

Total Execution Time [%)]
N
(@)

o

%
Average Service

= ApplLogic mTCP +* (De)Encr mRPC

Datacenter Tax Dominates Execution

DeathStarBench Services
100

80

60

40

20

Total Execution Time [%)]

o

%
Average Service

=~ AppLogic mTCP * (De)Encr mRPC = (De)Ser 10

Datacenter Tax Dominates Execution

DeathStarBench Services
100

(0]
o

o
o

N
o

Total Execution Time [%)]
N
(@)

Average Service
2 ApplLogic mTCP = (De)Encr mRPC m (De)Ser = (De)Cmp

11

Datacenter Tax Dominates Execution

DeathStarBench Services
100

(0]
o

60

40

20

Total Execution Time [%)]

Average Service
v ApplLogic BTCP '* (De)Encr mRPC m (De)Ser = (De)Cmp mLdB

12

Datacenter Tax Dominates Execution

DeathStarBench Services

100
S

:é 80

S 60

5 Lots of CPU cycles spent on
O 40 i

g datacenter tax operations
S 20

. 0 ST 7 777007

Average Service

v ApplLogic mTCP '* (De)Encr mRPC m (De)Ser = (De)Cmp mLdB 13

Datacenter Tax Reported by Major Hyperscalers

Google 2015 Facebook 2020

E\i B Application Logic Orchestration
o 100
-8 £)
S Sa8 %
S =

é %E [60
P 882 4
= allocation s2%9
) § £ 2 20
() .
] compression
> 0
© Pl o A & A e A S A e A Web Feedl Feed2 Ads1 Ads2 Cachel Cache2

S Q9 s S P O Q & > Facebook's production microservices

o q =) 3] p

§PLeFsSIES ¢
Figure 4: 22-27% of WSC cycles are spent in different compo- Figure 1. Breakdown of cycles spent in core application
nents of “datacenter tax”. logic vs. orchestration work: orchestration overheads can

significantly dominate.

mmm Core Compute B Datacenter Taxes B System Taxes

Spanner N D —
BigTable [N I ——
BigQuery | R —

0 20 40 60 80 100
Execution Time (%)

Platform

Google 2023

14

Figure 3: High-Level Application-Level Cycle Breakdown

Many Proposals for Individual Accelerators

CDPU: Co-designing C . p In.l.elys SOC st RPCs in Cloud Microservices with
: Co-designing Compression an .
Processing Units for Hyperscale pry Reconﬁgurable NICs

Sagar Karandikar Aniruddha N """~ ad = L - LT s Neil Adit
ety oA v e . . e el Untverslly |
J 001:]1230821]2?:;?')0 .Eérgﬂi: ; ervers na469@cornell.edu
Berkeley, CA, USA Berkeley, CA 8 ' B tlimitrou
F4T: AFastand _ Eg cHA. LLC CHA, LLC e @nstcom v
: TCP Acl| 18+ | s e i
e g for Protocol Buffers
SeoullvI I:;tiogal University 3 ry Chris Kennelly
goBoost Inc.
Seoul, Republic of Korea - g g - cc::'.";ih G{)];/gxle
Seongmin Na B ° . a1
PSS N -imi Borivoje Nikoli¢
Seoul National University ey UC Berkeley
Seoul, Republic of Korea uP! PCle USA

>arthasarathy Ranganathan
UC Berkeley Google 5
USA USA

Many Proposals for Individual Accelerators

CDPU: Co-designi
Processing
Sagar Karandikar

UC Berkeley, Google
Berkeley, CA, USA

Joonho Whangbo
UC Berkeley
Berkeley, CA, USA

F4T: A

B¢
Yak
Junehyuk Boo
B¢ junehyuk@snu.ac.l
Seoul National Unive:
MangoBoost Inc.

Seoul, Republic of Kc

Seongmin Na
seongmin.na@snu.ac
Seoul National Unive:
Seoul, Republic of Ko

Comptte Chiget 1 ComputeChiplet 2
| [
Data Mo wement A ekrator System Control
e [iovseemio]
—I— Memory Contr dler Memary Controler Memory Contr dller
=
g
! 66 Arm Neoverse V3
£ CPU Cores
ArmNeoverseV3 CPU =
g 6Memory Channds
Armv9.2 Com pressionard Cryptograpty
per chiplet f Accelerator
Data Mor em ent A ccelerator
[P bace N
System Control
12 Cache (3MB)
System Cache (1.5MB) §
=15 Memory Contr dller Memory Contr dler Memory Controller
o crpt

[

n__1 T

UC Berkeley
USA

Microservices with

le NICs

Neil Adit
Cornell University
Ithaca, New York, USA
na469@cornell.edu

limitrou
versity
ork, USA
rnell.edu

ocol Buffers

Chris Kennelly
Google
USA

Borivoje Nikoli¢
UC Berkeley
USA

>arthasarathy Ranganathan
Google

USA

How to Orchesirate Many Accelerators?

o Many individual accelerators proposed — how to manage theme

17

Orchestrate Many Accelerators: CPU-Centric

Initiate

18

Orchestrate Many Accelerators: CPU-Centric

Interrupt

19

Orchestrate Many Accelerators: CPU-Centric

Inifiate

20

Orchestrate Many Accelerators: CPU-Centric

Interrupt LLLLL

21

Repeated Interrupts > High Overhead

Fraction of fime spent orchestrating accelerators

Overhead [%]
— N WA O
ONOHNONG®NGN®)

0 5 10 15 20
Load [kRPS]

--CPU-centric
22

Orchestrate Many Accelerators: Direct Chain

@ B3 3 B3 B e

|

Multiple sources of the tax
execute in sequencel

23

Orchestrate Many Accelerators: Direct Chain

Initiate

24

Orchestrate Many Accelerators: Direct Chain

TCP Decr RPC Dser Bleiggle) LdB

25

Orchestrate Many Accelerators: Direct Chain

cr [l oec [l vrc I o Wocre

Interrupt

26

Direct Chaining Significantly Reduces Overheads

Overhead [%]
= N WA O
oNoNONGONGN®)

Fraction of fime spent orchestrating accelerators

0 5 10 15 20
Load [kRPS]

--CPU-centric -=Direct-Chain
27

Challenges of Direct Chaining

o Conftrol-flow divergences

28

Challenges of Direct Chaining

o Conftrol-flow divergences

Receive
function
request

TCP

—>|

Decr

\ 4

RPC

Dser

Y
—>< Compressede >—> Dcmp

LdB

CPU

29

Challenges of Direct Chaining

o Conftrol-flow divergences
o Data format fransformations

S’rrlng JSON

30

AccelFlow: Accelerator Orchestration Framework

Processor package

17" [ADmA Accelerator Trace Page
Accelerator Accelerator Engines Memory (ATM) Walkers
Chiplet Chiplet
TCP | | Encryption | | Serialization
% \ Accel (Encr) Accel (Ser) Accel
\ | | I
k RPC | | Decryption | | Compression
" Accel (Decr) Accel (Cmp) Accel
Core Chiplet Core Chiplet \ | |
\
\ Deserialization | | Decompression
. = \ (Dser) Accel (Dcmp) Accel
, S. v| 110 — - T
/ \\\ \ - \
Core + | | Core+ | | Core + ,’: """ !
Caches | | Caches Caches | ,1 1| Core :
I I | 1 |
Core+ | | Core+ | | Core+ : !
Caclhes Caclhes Cacihes | 128 :
! !
Core+ | | Core+ | [Core+ |\ |[LLC]|
Caches Caches Caches \: Slice | 1
| [}
Memory Load Balancer
Channel (LdB) Accel

31

AccelFlow: Accelerator Orchestration Framework

Processor package

1"~ 1| A-DMA Accelerator Trace Page
o Ensemble of accelerators — —— Engines | | Memory (ATM) | | Walkers
Chiplet Chiplet
TCP | | Encryption | | Serialization
% \ Accel (Encr) Accel (Ser) Accel
\ | | I
k RPC | | Decryption | | Compression
" Accel (Decr) Accel (Cmp) Accel
Core Chiplet Core Chiplet \ | |
\
\ Deserialization | | Decompression
. = \ (Dser) Accel (Dcmp) Accel
, ~-. 110 - T
/ T~o L I‘ == \
Core + | | Core+ | | Core + ,’: """ !
Caches | | Caches | | Caches | { 1| Core |,
I I | 1 |
Core+ | | Core+ | | Core+ : !
Caclhes Caclhes Cacihes | 128 :
! !
Core+ | | Core+ | [Core+ |\ |[LLC]|
Caches Caches Caches \: Slice | 1
| [}
Memory Load Balancer
Channel (LdB) Accel

32

AccelFlow: Accelerator Orchestration Framework

Processor package

1"~ 1| A-DMA Accelerator Trace Page
o Ensemble of accelerators Accelerator Accelerator Engines ||| Memory (ATM) | [Walkers
Chiplet Chiplet
1 1 _ TCP | | Encryption | | Serialization
o Direct inter-accelerator % \ Accel || (Encr) Accel || (Ser) Accel
. . \ I I I
ChCIIﬂlﬂg \ RPC | | Decryption | | Compression
" Accel (Decr) Accel (Cmp) Accel
Core Chiplet Core Chiplet \ | |
\
\ Deserialization | | Decompression
. = \ (Dser) Accel (Dcmp) Accel
/ S~ v| 110 - T
/ S \ _ - \
Core + | | Core+ | | Core + ,’: """ !
Caclhes Caclhes Caclhes A 1| core |,
| |
Core+ | | Core+ | | Core+ : !
Caclhes Caclhes Cacihes | 128 :
1 1
Core+ | | Core+ | | Core + K [Lee ||
Caches Caches Caches \: Slice | 1
| [}
Memory Load Balancer
Channel (LdB) Accel

33

AccelFlow: Accelerator Orchesiration Framework

o Ensemble of accelerators
o Direct inter-accelerator

ChGining Pass dofko to CPU
Receive [Y \
o Sequence of accelerators o y
. TCP D D Hite —>(Compressed?
stored in Software “Traces” to aread [TGP }-{Decr]~{Bser}{ re)= - .
cache N

‘ Ser H Encr H 1CP |l CPU

I
Send request to DB

34

AccelFlow: Accelerator Orchestration Framework

Processor package

A-DMA Accelerator Trace Page
O E nse m b I e Of G C C el e rO -I-O rS Accelerator Accelerator Engines Memory (ATM) Walkers
Chiplet Chiplet
1 1 _ TCP | | Encryption | | Serialization
o Direct inter-accelerator % \ Accel [(Encr) Accel | | (Ser) Accel
. 3 \ I I I
C h G I n I ng ' RPC | | Decryption | | Compression
_ _ " Accel (Decr) Accel (Cmp) Accel
Sequence of accelerators =i ' '
O q Y Deserialization | | Decompression
stored in software “traces” , B Vo | e LOmRAEE,
1 Core + | | Core + Core + | |"m=—=—= [-7 - \
O STGﬂdGrd InTerfgce Cacihes_Caclhes_Caclhes , || Core \ I-’-'——-———-———----—----———-———‘I
! "N Input Queue Output Queue !
Core + Core + Core + ! K I
and dispatchers Core+ | [Core | [Corev] ![re]! :
Caches Caches Caches | [\![Slice | 1 : Input Scratchpad Output :
Memory Load Balancer ot I : Dispatcher creenes D RatEon :
Channel (LdB) Accel o :

Input Dispatcher

o Schedules the requests from
Input Queue to PEs

o Fetches large input payloads
from memory

o Simple Finite State Machine

Input
Queue

Entry
|

Entry PM: Position Mark

—

Data

MemPt
SLO
Priority
ID
Ready
Trace|PM
Valid?

!
7

Input Dispatcher !|Overflow Pir

Free?2 Free?2
PE PE

36

Ouvutput Dispatcher

Output

PM: Position Mark
Queue S il
£ |z| |52 %
{é g né_ [a) E § Data 3—5
o Forward the request + data to 1 S -
next accelerator or to the CPU 3 ‘ | Memory
o Trace|PM .
o Compute branch conditions | Nefy | —5— St ansom I
. Engine
o Perform data transformations |“°° |Semiener « oot
(@]
- t R 2 j|_Queues
¢ 'y 4 g of Other
PV A DMA Accels
Engine Free? Engine Free?

37

Programming AccelFlow

o AccelFlow API allows programmers
to construct new traces:

o Define a linear chain of
accelerators

from AFlow import Trace, seq, branch, transform

trace = Trace() # Define trace

lpipeline = seq(# Compose trace

"TCP", "Decr", "RPC", "Dser",

branch (condition_op="out [’ compressed’] == 1",
on_true=seqg(trans ("JSON", "str"), "Dcmp"),
on_false=None),

"LdB")

Trace.pulla(piperine) 7 Attach piperine to ctrace —

trace.register (name="func_req") # Register trace

38

Programming AccelFlow

o AccelFlow API allows programmers
to construct new traces:

o Define a linear chain of
accelerators

o Add a conditional conftrol flow

from AFlow import Trace, seq, branch, transform

trace = Trace() # Define trace
pipeline = seq(# Compose trace
"TCP " "Decrll "RPCII "Dser" ,

branch (condition_op="out [’ compressed’] == 1",
on_true=seqg(trans ("JSON", "str"),
on_false=None),

"Dcmp") ,

"LdB ")
trace.build(pipeline)
trace.register (name="func_req")

Attach pipeline to trace
Register trace

39

Programming AccelFlow

o AccelFlow API allows programmers
to construct new traces:

o Define a linear chain of
accelerators

o Add a conditional conftrol flow

o Transform the format of the
data from one representation
to another

from AFlow import Trace, seq, branch, transform
trace = Trace() # Define trace
pipeline = seq(# Compose trace
"TCP", "Decr", "RPC", "Dser",
branch (condition ="
on_true=seqgj(trans ("JSON",
on_false=Normney),
"LdB")
trace.build(pipeline)
trace.register (name="func_req")

== W
’

"str") 0 "DcmP") 0

Attach pipeline to trace
Register trace

40

AccelFlow Summary

o Many on-chip accelerators to reduce datacenter tax
o Accelerators communicate directly with each other
o Small hardware engines

o Schedule requests onto accelerator PEs

o Compute branch conditions

o Perform simple data transformations

Pass do’rlo to CPU

Receive [Y

response

@ to aread ‘ TCP H Decr H Dser |—>< Hite /L,/ Compressed? >
to the DB
cache N

Ser p{ Encr p{ TCP¥|
\ I

|
Send request to DB

4]

Evaluation Methodology

O Cycle-accurate full-system simulations: SST + QEMU
O DeathStarBench services with Alibaba’s production invocation fraces
O Systems evaluated

O CPU-centric: accelerators orchestrated by CPU cores

O RELIEF (HPCA’24): accelerators orchestrated by a dedicated and
centralized hardware manager

O Cohort (ASPLOS’23): links pairs of accelerators that frequently go together,
but otherwise relies on the cores to orchestrate the accelerators

O AccelFlow: our proposal
42

AccelFlow Significantly Reduces Tail Latency

30

P99 Tail Latency [ms]
- = NN
&) O - On (@) O

Non-acc 43

AccelFlow Significantly Reduces Tail Latency

30

P99 Tail Latency [ms]
- = NN
&) O - On (@) O

Non-acc CPU-Centric 44

AccelFlow Significantly Reduces Tail Latency

30

o o0 O O,

P99 Tail Latency [ms]

@)

&)

Non-acc CPU-Cenfric RELIEF 45

AccelFlow Significantly Reduces Tail Latency

30

Non-acc CPU-Centric RELIEF Cohort 46

P99 Tail Latency [ms]
— = N N
&) O - On (@) O

AccelFlow Significantly Reduces Tail Latency

30

Non-acc CPU-Centric RELIEF Cohort AccelFlow 4/

P99 Tail Latency [ms]
— = N N
&) O - On (@) O

AccelFlow Reduces Average Latency

Non-acc CPU-Centric RELIEF Cohort AccelFlow 48

Average Latency [ms]
OO — N W N O O YN ©@©

AccelFlow Improves Throughput

60

N W M O
o O o O

Throughput [kRPS]

@)

Non-acc CPU-Centric RELIEF Cohort AccelFlow 47

&)

O An ensemble of domain-specific accelerators for "datacenter tax”
has the potential to improve the efficiency of microservices

O Redalizing these benefits requires an orchestration framework that
can keep up with the fine-grained and dynamic microservices

O AccelFlow: the first accelerator-orchestration framework for on-
chip accelerators targefing microservices

O 70% lower tail latency
O 38% lower average latency

O 2.2x higher throughput 50

ntel)

AccelFlow: Orchesirating an On-Package

Ensemble of Fine-Grained Accelerators for
Microservices

HPCA 2026, Sydney, Australia

Jovan Stojkovic*, Abraham Farrell, Zhangxiaowen Gong', Christopher
J. Hughest, Josep Torrellas

University of lllinois at Urbana-Champaign, Tintel, *Joining UT Austin in Fall 2026

