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Abstract
The rising demand for generative large language models
(LLMs) poses challenges for thermal and power manage-
ment in cloud datacenters. Traditional techniques are of-
ten inadequate for LLM inference due to the fine-grained,
millisecond-scale execution phases, each with distinct per-
formance, thermal, and power profiles. Additionally, LLM
inference workloads are sensitive to various configuration
parameters (e.g., model parallelism, size, and quantization)
that involve trade-offs between performance, temperature,
power, and output quality. Moreover, clouds often co-locate
SaaS and IaaS workloads, each with different levels of visi-
bility and flexibility.

To address these challenges, we propose TAPAS, a thermal-
and power-aware framework designed for LLM inference
clusters in the cloud. TAPAS enhances cooling and power
oversubscription capabilities, reducing the total cost of own-
ership (TCO) while effectively handling emergencies (e.g.,
cooling and power failures). TAPAS leverages historical tem-
perature and power data, along with the adaptability of SaaS
workloads, to: (1) efficiently place new GPU workload VMs
within cooling and power constraints, (2) route LLM infer-
ence requests across SaaS VMs, and (3) reconfigure SaaS VMs
to manage load spikes and emergency situations.
Our evaluation on a large GPU cluster demonstrates sig-

nificant reductions in thermal and power throttling events,
boosting system efficiency.
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1 Introduction
Motivation. Generative large language models (LLMs) are
increasingly being used in various domains, such as health-
care [52], developer productivity [19], and education [9].
Their use drives a high demand for LLM inference clus-
ters [28], requiring robust infrastructure with sophisticated
software and costly hardware. LLMs in the cloud typically
run on virtual machines (VMs) powered by the latest GPUs,
such as NVIDIA’s A100 [46] and H100 [45]. These GPUs con-
sume significant power, challenging the cooling and power
capacities of datacenters, which are major contributors to
the total cost of ownership (TCO) [8, 24, 43]. For instance,
the A100 and H100 GPUs have thermal design powers (TDP)
of 6.5 kW and 10.2 kW, respectively, and require substantial
cooling capabilities to maintain safe operating temperatures.
GPU servers and racks are typically limited by power density
rather than by space constraints.
Data centers hosting GPUs are organized into rows of

server racks equipped with cooling systems to dissipate
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Configuration parameters Perf Temp Power Quality

Model Size (e.g., 70B→7B) ↑ ↓ ↓ ↓↓

Quantization (e.g., FP16→FP8) ↑ ↓ ↓ ↓

Parallelism (e.g., TP8→TP2) ↓ ↑ ↓ −
Frequency (e.g., 2GHz→1GHz) ↓ ↓ ↓ −

Batch Size (e.g., 64→16) ↓ ↓ ↓ −

Table 1. Impact of different parameters on the performance,
temperature, power, and quality of an LLM inference server.
TP stands for tensor parallelism.

heat [38] and a power hierarchy for efficient power dis-
tribution [83]. Cooling systems need to manage the heat
generated by the servers at all times. However, cooling effi-
ciency can vary spatially (e.g., some GPUs within a server
may be hotter that others) and temporally (e.g., different
external temperatures at different times impact cooling). At
each level of the power hierarchy, servers share a common
power supply, and exceeding the total power draw leads to
power capping. Hence, proper cooling and power provision-
ing is essential—both during normal operations and during
cooling/power failures and emergencies.
While advancements in LLM inference cluster perfor-

mance have been achieved through software systems [14, 27,
42, 81, 86], hardware techniques [4, 49, 84], and model ar-
chitectures [41, 71], thermal and power challenges have not
received the same level of attention [48, 56, 65, 67]. In tradi-
tional datacenters, thermal [20, 38, 43, 50] and power [22, 32,
51, 68, 83] management have been extensively studied. How-
ever, we find that the unique characteristics of LLM inference
workloads make traditional approaches sub-optimal.

In this paper, we target public clouds that host both Software-
as-a-Service (SaaS) and Infrastructure-as-a-Service (IaaS)
GPU workloads. SaaS workloads are transparent GPU VMs
managed by the cloud provider, while IaaS workloads are
opaque GPU VMswith no provider visibility. SaaS workloads
admit configuration adjustments, while IaaS VMs remain
unmodifiable. SaaS workloads run LLM inference, which in-
volves several configuration parameters (e.g., GPU frequency,
batch size, model parallelism, parameter count, and preci-
sion) that balance performance, thermal output, power, and
result quality, as shown in Table 1. In addition, LLM inference
comprises distinct phases, each with unique performance,
thermal, and power characteristics [49].
Our work. To address these challenges, we propose TAPAS,
the first thermal- and power-aware scheduling scheme de-
signed specifically for LLM inference clusters in the cloud.
TAPASmaximizes cooling and power oversubscription while
minimizing the impact on IaaS workloads and maintaining
performance and accuracy for SaaS workloads. In addition,
TAPAS dynamically adjusts LLM workloads in response to
power or cooling failures in a datacenter. The result is sub-
stantially reduced cloud platform TCO.

TAPAS gracefully manages occasional load spikes and
emergency events (e.g., cooling or power failures) through
three core principles. First, it places GPU VMs in a thermal-
and power-aware manner by leveraging historical data on
temperature, power consumption, and service load. Second,
it routes requests across LLM instances based on the load of
individual VMs, as well as the available thermal and power
capacity of the underlying infrastructure. Third, it reconfig-
ures SaaS instances within the cooling and power hierarchies
to restore temperature and power levels to safe limits.

Results.We evaluate TAPAS on a large GPU cluster using
production traces from Microsoft Azure. Our results show
that TAPAS maintains the P99 tail latency of inference re-
quests while reducing maximum temperature by 17% and
peak row power by 23%. These reductions create more oppor-
tunities for oversubscription, enabling up to 40% additional
capacity and, consequently, lowering datacenter TCO.

To validate our findings at scale, we use traces from hun-
dreds of production racks across a set of datacenters and sim-
ulate TAPAS. Compared to other practical policies, TAPAS
reduces thermal and power throttling events by 97% and
99%, respectively. In addition, we demonstrate that TAPAS
operates effectively during cooling and power failures.

Summary. We make the following main contributions:

• Characterization of the thermal and power properties of
GPU-based LLM inference workloads and their behavior
at production scale.

• TAPAS, the first thermal- and power-aware scheduling
scheme for LLM inference systems.

• A thorough evaluation of TAPAS in a GPU cluster using
large-scale production traces.

2 Characterizing Challenges in Thermal
and Power Infrastructure for GPUs

To identify the challenges in managing cooling and power
for GPU workloads, we characterize the datacenter infras-
tructure required to support these workloads. We focus on
spatial and temporal heterogeneity in the usage of thermal
and power infrastructure, which can be exploited to operate
GPU workloads more efficiently. We introduce equations to
help us model thermal and power aspects at datacenter scale.

Datacenter overview. Cloud providers host a variety of ser-
vices from multiple users on shared infrastructure. We study
datacenters hosting both A100 [46] and H100 [45] GPUs,
which are typically used for LLMs [49]. Servers in a datacen-
ter are arranged in rows of racks. Due to the size and power
density of GPUs, racks and rows host fewer servers than
in general-purpose datacenters. These datacenters also host
other infrastructure for storage, network, and management.
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Figure 1. Sample datacenter layout illustrating 80 racks
organized into 8 rows with 4 cold aisles. The rack color
represents the inlet temperatures for the top server.

2.1 Cooling

Infrastructure. GPU servers generate a large amount of
heat, while their temperature needs to stay below a specific
threshold (e.g., 85°C for GPUs). On exceeding the threshold,
the hardware starts throttling the computation to prevent
failures and permanent damage [44].
Depending on the regional climate, datacenters may use

technologies like mechanical or adiabatic cooling to lower
temperatures [15]. While other alternatives exist (e.g., liquid
cooling [24]), we focus on air cooling as it is the most com-
monly used method in today’s datacenters [15, 16, 23, 40].
Many of our insights can be applied to other technologies.
Datacenters are usually arranged in aisles composed of

two rows. Figure 1 illustrates an example of airflow within
one of the rooms in one of the datacenters. The air handling
units (AHUs) in each row blow cold air from the datacenter-
level cooling devices (e.g., adiabatic cooling towers in evapo-
rative cooling) into the cold aisle. The servers use fans with
modulated speeds based on activity to draw cold air from
the front, pass it through the server (including the GPUs),
and exhaust the heated air into the hot aisle. The cooling
devices then take this hot air and cool it down again. To
avoid heat recirculation (i.e., hot air returning to the cold
aisle), the airflow provided by the AHUs must exceed the
airflow consumed by the servers in the cold aisle.
Provisioning. Datacenter operators usually provision the
cooling infrastructure to sustain their peak load [38]. This
means they need to have (1) enough airflow in each aisle (i.e.,
AHUs) to prevent heat recirculation and (2) enough cooling
capacity in the datacenter to lower the temperature within
operating conditions. Operators can add racks to rows as
long as both conditions are met.
Failures. Datacenters typically build redundancy to handle
failures (e.g., N+1 [83]). When a cooling device fails, other
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Figure 2. Inlet and outside temperatures for three sample
servers in one datacenter throughout August 2024.

devices in the datacenter compensate. However, this results
in reduced cooling capacity, which may increase the temper-
ature across all cold aisles in the datacenter. If an AHU fails,
the other AHUs in the aisle handle the airflow. Insufficient
airflow from the AHUs in the aisle leads to heat recirculation,
raising the temperature of all servers in the two rows.
Characterization. To understand the thermal impact of the
cooling infrastructure, we study a sample of our datacenters
at Microsoft Azure containing tens of thousands of GPUs
(including both A100 and H100) across three regions with
varying climates. The study spans three months, from July
1𝑠𝑡 to August 30𝑡ℎ , 2024, covering the warmer months when
cooling demands are highest due to elevated outside temper-
atures. In addition, one of the datacenters located in a colder
region is included to account for cooler climate setups. We
collect data on inlet and outlet temperatures for each server,
the outside temperature, and the temperature and power of
each component (e.g., GPU and memory), reporting the aver-
ages every 10 minutes. This 10-minute interval aligns with
the frequency of all sensors and enables the approximation
of heat from average power. While we discuss individual
examples, our insights are derived from the full dataset.
Outside temperature.Cooling technologies like adiabatic cool-
ing [15, 16, 20, 23, 38, 40] use outside air when it is cold for
efficiency. Figure 2 shows the inlet temperature for three
servers in the same aisle and the outside temperature in Au-
gust 2024. The inlet temperature follows the trend of the
outside temperature.

Figure 3 shows the inlet and outside temperature for these
servers over three months. Each point represents the inlet
temperature for Server 3 and the outside temperature every
10 minutes. The lines are a regression of these points for each
of the servers. When it is cold outside, the cooling maintains
the inlet temperature (e.g., over 18°C) to avoid increasing
humidity, which increases failures [20]. Over 15°C outside,
the inlet temperature increases linearly with the outside.
When it is hot outside (i.e., 25°C), the cooling lowers the
temperature. Locations with higher temperatures are less
sensitive to the outside temperature.
Datacenter layout. Given the physical layout, the inlet tem-
perature for each server is not homogeneous, and there are
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Figure 3. Regression analysis comparing inlet and outside
temperatures for three sample servers. The figure includes
actual measurements for Server 3.
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Figure 4. Inlet temperature distribution across physical en-
tities: rows, racks within rows, and height within racks.

hotspots. Figures 2 and 3 show how Server 1 is consistently
warmer (∼ 2°C) than the other two. Figure 1 shows that the
median temperature across racks and rows varies: the end
of some rows is warmer than others because of airflow and
construction differences. These airflow patterns are hard to
estimate beforehand and require measuring them empiri-
cally or expensive simulations. Figure 4 shows the median
temperature over the three months depending on the physi-
cal entity. For each physical entity (i.e., index on x-axis), the
figure shows the average temperature of that entity across
a subset of our datacenters. It represents how temperature
varies spatially across physical entities. Some rows have tem-
peratures up to 1°C higher than others, with racks within a
row showing differences of up to 2°C. The height within the
rack has a minor impact.
Datacenter load. The amount of heat in the datacenter also
affects the inlet temperature. Cooling devices usually lower
the outlet temperature by Δ𝑇 (e.g., 10°C). When the heat
generated by the servers increases, the inlet temperature also
increases. Figure 5 shows the regression between datacenter
load (average power for 10 minutes) and inlet temperature
for one server in a hot region. For example, when it is 35°C
outside, there is an inlet temperature difference of 2°C when
the load is low and high. Note that the correlation with
datacenter load is much lower than with inlet temperature.
Using the three months of data, we apply regression to model
the inlet temperature for each server 𝑠:

∀𝑠∈𝑆𝑇𝑖𝑛𝑙𝑒𝑡,𝑠 = 𝑓𝑖𝑛𝑙𝑒𝑡,𝑠 (𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒 , LoadDC) (1)

Figure 5. Inlet temperature as a function of datacenter load
and outside temperature. It includes actual measurements
and regression lines per power load levels.
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Figure 6.GPU andmemory temperature over time alongside
inlet temperature.

Figure 7. GPU temperature as a function of inlet tempera-
ture and GPU power load over 10 minutes using data from
Figure 6. The figure includes a regression curve based on
inlet temperature and GPU load.

GPU temperature. Once the inlet air enters the server, the
fans circulate the cold air to cool down the server compo-
nents (e.g., GPUs and their memory). Figure 6 shows the
GPU and memory temperature, along with the inlet and
outlet temperature, and GPU power for an example server
running tests for this work over 45 days. For confidentiality,
we display results from a test server running non-production
workloads. The GPU memory is warmer than the GPU and
there is an offset between inlet and outlet. Figure 7 displays
a linear regression of the temperature of one GPU compared
to the inlet temperature and GPU load. This regression has a
mean absolute error of less than 1°C. The GPU temperature
is sensitive to both the GPU load and the server inlet tem-
perature. This regression also captures the inlet temperature
increase caused by power leakage [2].
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ing to the data in Figure 6.
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Figure 9. Distribution of temperatures for over 3,000 GPUs
and their memory at high load with comparable inlet tem-
peratures in a single data center.

GPU heterogeneity. Figure 8 shows the temperatures of the 8
GPUs in a DGX A100 [46] server running the same workload.
Despite identical inlet temperatures and GPU utilization at
each point in time, the temperatures of individual GPUs can
differ by up to 10°C. This variation is due to server layout
(e.g., components obstructing airflow to certain GPUs) and
manufacturing variations in the GPUs themselves (i.e., pro-
cess variation [2]). When the temperature within the server
is high, the fans will increase airflow to cool the GPUs. It is
important to account for this when provisioning the AHUs.

Extending the insights to servers running productionwork-
loads at scale, Figure 9 shows the heterogeneity in tempera-
ture across GPUs in one datacenter running high GPU load
and similar inlet temperatures. Despite this, there is a range
of over 20°C across GPUs in the same datacenter. Notably,
the temperature of the GPU memory is slightly lower than
the GPU itself. The right side of Figure 9 shows the median
temperature for each of the 8 GPUs in the server and their
inter-quartile range. The GPUs with even identifiers (e.g.,
GPU2 and GPU4) exhibit a lower temperature due to the
server layout, as they are closer to the inlet [65].

Using the data for the three months, we generate a model
for the temperature of each GPU 𝑔 in each server 𝑠:

∀𝑠∈𝑆,𝑔∈𝐺𝑇GPU 𝑠,𝑔 = 𝑓𝐺𝑃𝑈𝑠,𝑔 (𝑇𝑖𝑛𝑙𝑒𝑡,𝑠 , LoadGPU ,𝑔) (2)

Airflow.We measure the speed of the server fans when the
server is idle and when it is running at full load (i.e., all GPUs
running heavy workloads). Then we run a few intermediate
settings and interpolate a linear function. Our measurements
match the manufacturer specs, which indicate an airflow of

840 and 1105 cubic feet per minute (CFM) at 80% speed with
pulse width modulation (PWM) fans for A100 and H100 re-
spectively [45, 46]. All servers follow a similar linear function
with very small differences: 𝑓𝑎𝑖𝑟 (𝐿𝑜𝑎𝑑𝐺𝑃𝑈 ,𝑠 ). As mentioned,
we need to guarantee the provisioned airflow from the AHU
is larger than the aggregated server airflow requirement:

∀Aisle∈𝐷𝐶
∑︁

𝑠∈𝑆Aisle
𝑓air (Load𝐺𝑃𝑈 ,𝑠 ) ≤ ProvAHUAisle (3)

Insight #1: For effective thermal management, cloud opera-
tors must consider temporal heterogeneity due to variations
in outside temperature and load, spatial heterogeneity related
to datacenter and server layouts, and airflow requirements.

2.2 Power

Infrastructure. Datacenters typically implement a three-
level power distribution hierarchy to deliver electricity from
the utility grid to individual servers [74, 79, 83]. At the high-
est level, an Automatic Transmission Switch (ATS) directs
power from the grid to multiple Uninterruptible Power Sup-
plies (UPS). Each UPS shares a fraction of the total datacenter
power load and is connected to a series of Power Distribution
Unit (PDU) pairs. These PDU pairs further step down the
voltage and support multiple rows of server racks.
Provisioning. To prevent tripping the circuit breakers, dat-
acenter operators provision for peak power usage at each
level of the hierarchy to account for worst-case scenarios.
For safety, when the total power draw exceeds the power
supply, servers within that level are power-capped. For de-
sign simplicity and to reduce implementation costs, these
power limits are further distributed down the hierarchy ho-
mogeneously, eventually limiting the number of server racks
that can be provisioned within the budget. Operators can
oversubscribe the power capacity by adding racks to a row,
as long as they remain within the row-level power envelope.
Failures. To ensure high availability, clouds implement re-
dundancy at each power hierarchy level. For instance, prior
work describes a setup with 4N/3 redundancy at the UPS
level and 2N at the PDU level [83]. When a UPS fails, its
load is redistributed among the remaining three units. Under
heavy load, this can push the others over capacity, requiring
each unit to quickly reduce its load to maintain limits, effec-
tively lowering the datacenter capacity to 75%. We focus on
this design as its balances normal and fail-over operation.
Our findings extend to other redundancy models [34, 55].
Characterization. Prior works characterize the power pro-
file of GPU servers running LLMs [48, 49]. We complement
these studies with our own data focusing on power imbal-
ances at datacenter scale. We study the same datacenters as
in the cooling section. For confidentiality, we normalize all
values to the maximum power draw.
GPU load and server power.Wemeasure server power for both
A100 and H100 servers across various utilization levels and
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Figure 10. Power utilization timeline for four sample rows
and power across rows within a datacenter.

workloads (e.g., Figure 6). Server power is strongly correlated
with GPU load [48, 65]. Even when idle, servers consume
significant power, similar to traditional CPU servers [39].
Besides GPU power, a substantial portion is drawn by fans,
storage, memory, CPUs, and other components [48]. For
each server 𝑠 , we used polynomial regression to generate a
function 𝑓𝑝𝑜𝑤𝑒𝑟 (LoadGPU 𝑔,𝑠 ), which accounts for fan power
and other components that also depend on load.
Power imbalance across rows. Row power utilization is the
aggregation and multiplexing of individual server power.
Figure 10 shows the power draw of four sample rows in a
datacenter over a week. We see that the power draw has
significant variation across rows. We quantify this behavior
at scale in Figure 10, which shows the CDF of P50 and P99
power draw across 100 rows in a subset of our datacenters.
The figure shows a heavy tail pattern: 50%, 75%, and 90% of
the rows draw 28%, 18%, and 10% less P99 power than the
most power-hungry row, respectively.
The high-power rows create hotspots in the datacenter,

requiring sufficient power provisioning to meet the demands
of these rows. Thus, power allocated to lower-demand rows
is wasted, significantly hindering the cloud provider’s ability
to safely oversubscribe. We define this as:

∀Row∈𝐷𝐶
∑︁

𝑠∈𝑆Row
𝑃𝑜𝑤𝑒𝑟𝑠 (Load𝐺𝑃𝑈 ,𝑠 ) ≤ ProvPowerRow (4)

Insight #2: The power demands of GPU clusters present a
strong opportunity for power oversubscription. However,
to safely oversubscribe, the infrastructure must effectively
manage the rows at the tail end that generate hotspots.

3 Characterizing Opportunities in Thermal
and Power Properties of GPUWorkloads

To reason about the impact of GPUworkloads on the thermal
and power properties in cloud datacenters, we (1) analyze
the physical placement of GPU workloads atMicrosoft Azure,
(2) profile SaaS LLM inference workloads from a production
environment, and (3) characterize the thermal and power
properties of LLM inference varying a set of configurations
with open-source models [72].
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Figure 11. Distribution of aisle peak GPU temperature and
row power with 100K random VM placements.

3.1 GPU workload placement

Cooling and power impact. To analyze the impact of GPU
workloads on cooling and power infrastructure, we deploy 80
VMs across two rows in a datacenter (Section 2) and generate
100K random placements across these two rows. Figure 11
illustrates the distribution of peak server temperatures and
row power with these placements. The worst-case placement
results in a maximum temperature exceeding 85°C, while a
typical placement averages around 72°C. In terms of peak
power, the worst-case placement increases peak power by
27% over the optimal placement. If more intensive workloads
are placed on hotter servers or if synchronous peak loads
are co-located on the same row, the provider must provision
sufficient cooling and power to support these extreme scenar-
ios. Additionally, Figure 11b shows no correlation between
maximum temperature and peak power for VM placements,
indicating that cloud providers should consider both thermal
and power factors when placing VMs across the datacenter.
Long-lived VMs. Figure 12a shows the lifetime of VMs run-
ning GPU workloads. Most VMs are long-lived (e.g., over
60% run for more than two weeks). Since these VMs typically
occupy a full server, this implies that a given server may be
dedicated to a workload for extended periods. Figure 12b
shows that 75% of servers host only one VM over the course
of a month. Figure 13a shows an example VM over a 4-week
period with a distinctly periodic diurnal load pattern. Aggre-
gated at row level (Figure 13b), the power consumption also
shows a periodic pattern.
Predictable load. We predict both row- and VM-power
usage using a template-based approached derived from per-
row and per-customer VM power [68]. Using 4 weeks of
historical power data, we generate templates that capture
the average power at specific times of the day with 5-minute
granularity. Figure 14a shows that using different power tem-
plates, row power prediction based on past history has less
than 10% error for most row hours. A conservative predic-
tion using P99 underestimates the power for less than 4% of
the row×hours. For VM power prediction, cloud providers
can leverage customer information, as shown in Figure 14b,
with errors below 10% for more than 75% VM×hours and
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Figure 12. How long VMs last over 1 month.
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Figure 13. Normalized load over time for an example VM
and power over time for an example row.
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Figure 14. CDF of the row- and customer-based power draw
prediction error with different power templates.

underpredictions between 2-7% for P90 and P99 templates.
These further demonstrate the predictability of row- and
VM-level power consumption.
Insight #3: Cloud operators can leverage workload hetero-
geneity and predictability for intelligent workload placement
to relieve hotspots and smooth out thermal/power spikes.

3.2 LLM inference routing

IaaS vs SaaS. Microsoft Azure hosts a variety of GPU work-
loads, which we categorize as either IaaS or SaaS. IaaS uses
opaque VMs [6, 13, 58, 59], allowing customers to run any
workload (e.g., inference, training, fine-tuning) for anymodel
(e.g., LLM, diffusion, image recognition). IaaS VMs accom-
modate diverse workloads, with limited visibility into their
characteristics, making them variable and hard to predict.
On the other hand, SaaS is fully managed by the cloud
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Figure 15. Number of VMs per SaaS endpoint.

provider [3, 5, 60, 61]. In all the datacenters across regions,
there is a significant portion of SaaS VMs. This allows for
more flexible thermal and power shaping in the datacen-
ter. Both SaaS and IaaS VMs are long-lived and their power
consumption is periodic and predictable.
SaaS workloads. The SaaS offering in our A100 and H100
datacenters serves multiple LLM inference endpoints, each
hosting various LLMs for different applications [3, 57, 60, 70].
Each endpoint operates a dedicated set of VMs, which can
host multiple LLM inference instances, routing user infer-
ence requests across these instances. Figure 15 shows the
distribution of VMs serving requests per SaaS inference end-
point: 50% of the VMs belong to large endpoints with over
100 VMs spanning across multiple rows.
Load balancing.Cloud platforms traditionally use VMplace-
ment algorithms based on allocation rules that are power-
and thermal-oblivious [21]. On top of this setup, our SaaS
implementation schedules LLM inference requests across
VMs to improve latency and throughput [1, 30, 82]. How-
ever, these VMs may reside in rows with different thermal
and power characteristics (e.g., Figure 10). If the Load Bal-
ancer is unaware of temperature conditions, it may assign
equal workloads to servers that are already near thermal
throttling. Similarly, disregarding power conditions could
result in sending additional load to VMs in rows with high
power demand from neighboring IaaS servers, exacerbating
power strain.
Insight #4:Cloud operators can leverage the flexibility of SaaS
LLM inference workloads for thermal- and power-aware
request routing to maximize oversubscription opportunities.

3.3 LLM inference instance configuration
As outlined in Table 1, LLM inference servers have various
configuration options that balance thermal/power require-
ments, performance, and result quality. To evaluate these op-
tions, we run Llama2 [72] inference workloads on an NVIDIA
DGXA100 server [46]. LLM inference consists of two distinct
phases [49]: the prefill (i.e., prompt) phase, which processes
the entire prompt in parallel, and the decode phase, which
generates each output token sequentially.
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(b) Batch size [81].
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(c) Llama2 model sizes [72].

Figure 16.Temperature and power of a server running prefill
and decode phases varying configuration parameters.

Impact of configuration parameters. In Figure 16, we
quantify the impact of each parameter individually: GPU
frequency, parallelism, batch size, model size, and quantiza-
tion. The red line represents the maximum temperature and
power (TDP), while the blue line shows the idle conditions.

GPU frequency. Lowering the frequency reduces both tem-
perature and power of the GPU. Prompt phases are more
sensitive to GPU frequency [48, 67]. Although reducing the
frequency has a lower impact on temperature and power
than other configuration parameters, it does not affect the
quality of results and can be applied instantaneously due to
its relatively low overhead.

Model parallelism. We focus on tensor parallelism [63] be-
cause other parallelisms like data and pipeline parallelism are
not as effective for LLM inference within a single server [49].
Figure 16a shows the temperature and power of a server run-
ning prompt and decode phases varying tensor parallelisms:
TP8, TP4, and TP2 [63] (i.e., powers of two with the number
of KV heads [72]). With TP2, the total server power reduces
as we use fewer GPUs. However, as the same amount of
work is concentrated in fewer GPUs, the per-GPU power in-
creases. Hence, the temperature of the hottest GPU increases.
Lower parallelism impacts power more significantly during
prompt phase and temperature during decode phase. Thus,
depending on the workload’s phase and the target metric

(i.e., reducing temperature or power), the system needs to
take different actions.
Batch size. Figure 16b shows the temperature and power with
different batch sizes: 64, 16 and 1 [81]. With smaller batch
sizes, the computational intensity decreases, and the tem-
perature and power go down. However, during the decode
phase, as GPUs need to more frequently fetch the data from
memory via the memory controller (instead of bulk trans-
fers), the memory temperature increases. Thus, depending
on the bottleneck (temperature or power) and the workload’s
phase (prompt or decode), the system may decide to choose
different batch sizes.
Model size. Figure 16c shows the power consumption and
temperature associated with different Llama2 [72] model
sizes: 70B, 13B, and 7B. As the model size decreases, the
computational intensity of inference reduces significantly,
resulting in lower power draw and temperature. However,
smaller models tend to produce results of lower quality [37].
For example, the 7B model reduces result quality by 30-40%
compared to the 70B model [7, 72].
Model quantization.We observe a similar behavior with quan-
tized model: lower precision leads to reduced temperature
and power while decreasing the accuracy by 2-20% [7, 33, 37].
Because both smaller and quantized models generally lead
to reduced quality, the system must carefully manage the
proportion of the load directed to different model variants
to uphold average per-service quality SLOs.
Thermal and power space. We quantify the performance
of an LLM inference server in terms of its goodput (i.e., the
number of tokens processed per second while staying within
TTFT and TBT SLOs, defined as 5× the execution time on an
unloaded system [36, 85]). Figure 17 illustrates the trade-off
between temperature/power and goodput across all configu-
rations (i.e., GPU frequency, parallelism, batch size, model
size, and quantization). Goodput is normalized to the fastest
configuration for the smallest model (i.e., Llama2-7B), while
temperature and power are normalized to the fastest con-
figuration with the highest accuracy (i.e., Llama2-70B). The
figure highlights the impact of the model size as it affects
quality. Each model exhibits a Pareto frontier representing
configurations that minimize temperature and power with
minimal impact on performance.
Insight #5: Cloud operators can effectively shape thermal
and power while minimally impacting LLM inference per-
formance and results quality by configuring SaaS instances.

4 TAPAS Design
Architecture. Based on our insights, we propose TAPAS, a
framework for thermal and power management in GPU clus-
ters for cloud environments. TAPAS is specifically designed
to address the unique properties and challenges of LLM
inference workloads. TAPAS enhances cooling and power



TAPAS: Thermal- and Power-Aware Scheduling for LLM Inference in Cloud Platforms ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

0.6
0.7
0.8
0.9
1.0

No
rm

. t
em

p 70B 13B 7B

0.00.20.40.60.81.0
Norm. goodput

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

. p
ow

er

Figure 17. Normalized temperature and power (lower is
better) and goodput (higher is better) of Llama2 [72] with all
configuration parameters highlighting the model size.
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oversubscription capabilities while effectively managing in-
frastructure failures, thereby reducing datacenter TCO with
minimal impact on workload performance or result quality.
The system leverages the adaptability of SaaS workloads
without impacting IaaS workloads.

Figure 18 overviews the architecture. TAPAS (1) extends
existing components of conventional cloud LLM inference
clusters (e.g., per-cluster VMAllocator and per-endpoint Load
Balancer), (2) introduces a per-SaaS VM Instance Configura-
tor, and (3) maintains multiple Profiles. To achieve its goals,
TAPAS focuses on three core aspects: VM placement, LLM
inference request routing, and instance configuration.

4.1 Workload placement
AsVMs arrive, theVMAllocator assigns each newVM (whether
IaaS or SaaS) to a server, aiming to meet workload demands
while minimizing the risk of thermal or power hotspots.
Aisle and row filtering. Using historical server load data,
we predict the peak airflow requirements for each aisle and
peak power demand for each row. If data is insufficient for

a server (i.e., less than one week), we assume peak load
conditions. We then estimate the load of the new VM based
on the load from VMs associated with (1) the same user for
IaaS workloads and (2) the same endpoint for SaaS workloads.
Again, we assume peak load if historical data is insufficient.
We estimate the new peak airflow for each aisle and power
demand for each row if the VM were to be placed, and we
filter out servers in aisles or rows that would exceed airflow
or power limits (Equations (3) and (4)).
Placing hotter IaaSVMs in cooler servers.As fine-grained
control over IaaS VMs is limited, we prioritize placing them
on cooler servers to minimize the risk of thermal throttling,
ensuring server temperature stays within safe limits even un-
der high IaaS load. For each server, we feed historical server
inlet temperatures and predicted VM loads into Equation (2)
to estimate peak GPU temperatures and select servers with
the lowest projected temperatures. We attempt to place SaaS
VMs in warmer servers, as we can adjust the configuration
of such instances during emergency events, while ensuring
that the maximum GPU temperature constraints will not be
violated based on the predicted load for that endpoint.
Balancing IaaS and SaaS. To enable SaaS workloads to
balance airflow and power to reduce peaks, it is important
to achieve a good balance of IaaS and SaaS workloads within
each aisle and row. We aim to place new VMs in an aisle
and row that will not result in an excessive concentration of
either IaaS or SaaS VMs.
Migration. Beyond initial VM placement, we can recalculate
better placements and migrate VMs to address mispredic-
tions or changes in workload behavior. For SaaS workloads,
we can create a new VM, transfer the workload, and then
decommission the old VM. However, for IaaS VMs, migration
must be seamless and non-disruptive [12]. Currently, live
migration of GPU VMs is unsupported due to the complexi-
ties of GPU memory management, but this capability would
enhance performance if implemented.

4.2 Request Routing
Once we place workloads in servers, TAPAS leverages multi-
instance SaaS endpoints to further smooth temperature and
power draw through finely routing LLM inference requests.
We consider three constraint levels: aisle, row, and server.
Aisle. For each aisle, TAPAS estimates the load on each
server and calculates the total airflow demand for the VMs in
that aisle. This information is cached and recalculated every 5
minutes, updating whenever discrepancies are detected (e.g.,
if a server’s power consumption is higher than estimated).
TAPAS then prevents routing requests to VMs that could
trigger an airflow violation.
Row. Similarly to aisles, TAPAS estimates the load for all
servers in a row and aggregates these into a total power
value. It then assesses whether routing requests to VMs in
that row would risk exceeding the peak power limit.
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Server. TAPAS tracks the current load and, using Equa-
tion (2), estimates whether the GPU temperature for each
server will exceed the threshold. It avoids routing requests
to VMs on servers with a high risk of overheating.

4.3 Instance configuration
To ensure servers remain within cooling and power lim-
its during load spikes or emergency events, TAPAS calcu-
lates the maximum allowable airflow, GPU temperature, and
server power for each instance. Based on these limits, the
Instance Configurator leverages the thermal and power pro-
files of the LLM from Figure 17 to determine the optimal
GPU frequency, batch size, model parallelism, quantization,
and model size that maximize goodput without quality im-
pact. It identifies configurations that, given the current load,
satisfy performance SLOs while staying within power/ther-
mal budgets. It predicts TTFT/TBT latencies, power draw,
and temperature for each, selecting the highest-accuracy,
highest-performance configuration within budgets.
Profiling a SaaS LLM service takes 3-4h to generate the

configuration space and is performed onlywhen a newmodel
is registered with TAPAS. Datacenter organization profiling
occurs once during deployment. Both profiling overheads are
negligible compared to the lifetime of an LLM or datacenter.
All configuration knobs (e.g., GPU frequency or model

parallelism) are available with the LLM inference engine. The
configurator communicates with the engine, which accepts
the messages and adjust its configuration dynamically. All
knob values are set such that service’s SLO is always met.
During online decision making, TAPAS accounts for the

time required to reassign these settings and prevent requests
from being sent to instances during transitions [69]. For ex-
ample, changing the model parallelism, size, or quantization
level requires reloading the model, which can take a few
seconds. Given these overheads and the goal of maximizing
quality, adjustments to model size and quantization are typ-
ically the last resort. Specifically, SaaS instances switch to
lower-accuracy models only when power/thermal headroom
in their rows is insufficient. The configurator first adjusts
performance knobs and selects the highest-accuracy model
that fits within the power/thermal headroom without violat-
ing performance SLOs. On the other hand, TAPAS does not
alter the accuracy of IaaS instances.

4.4 Oversubscription and failures

Oversubscription.Using TAPAS, we can reduce the cooling
and power requirements needed to run the same workload.
When the cloud provider initially provisions cooling and
power for the datacenter, it typically plans for peak baseline
demand. As demand increases, the cloud operator can add
more racks to the existing rows, utilizing the slack created
by TAPAS. Additionally, our TAPAS simulator can be used

with an estimated workload to assess cooling and power
requirements, enabling more precise provisioning.
Failure management. If there is a cooling or power fail-
ure, TAPAS recalculates the new available airflow for each
aisle, the power for each row, and the inlet temperature for
each server. Based on this, the request routing will steer
requests away from constrained servers. In addition, the In-
stance Configurator will decrease the load accordingly. If all
these actions are not enough, TAPAS applies regular power
capping techniques to the IaaS VMs [48].

4.5 Implementation

Profiles. TAPAS includes an offline profiling phase that
takes place during the initial stages of datacenter deploy-
ment, when operators run benchmarks and validation tests.
This phase models: (1) the datacenter layout, (2) the inlet
temperature of each server, (3) the temperature of each GPU,
(4) the server fan airflow, and (5) the power-load for the
servers. In addition, when the provider onboards a new LLM,
TAPAS profiles the impact of each configuration parameter
in that hardware, following the process described in Sec-
tion 3. During regular datacenter operation, TAPAS refines
these models on a weekly basis. During this weekly update,
TAPAS collects power and load patterns for each server and
row to predict their utilization. We use a template-based
approach that leverages data from the previous week [68].
We make these models and profiles available to the other
three main components through regular data updates.
VM Allocator.We implement our workload placement poli-
cies in a rule-based VM Allocator, inspired by Protean [21],
using three main rules: (1) a validator rule filters aisles and
rows based on peak airflow and power; (2) a preference rule
directs IaaS workloads to cooler servers and SaaS workloads
to warmer servers. For this rule, we categorize servers into
three equally sized groups: cold, medium, and warm; and (3)
another preference rule guides VM placement based on the
IaaS/SaaS balance, grouping servers into three categories:
IaaS-heavy, SaaS-heavy, and balanced. These rules use cur-
rent cluster data and the weekly updated models and profiles.
Finally, our VM Allocator applies these rules to select the
final server to host the GPU VM.
Load Balancer. We deploy the SaaS endpoints on a dedi-
cated set of VMs that expose an HTTP REST interface. These
VMs implement the Load Balancer, which forwards LLM in-
ference requests to the appropriate VM within the endpoint.
For each VM, TAPAS evaluates the current VM state along
with the server’s thermal and power profiles to calculate
the probability of violating any of the three operational lim-
its (i.e., thermal, power, and performance). Requests are not
routed to VMs with a high risk of violation.

After the filtering step, TAPAS applies state-of-the-art load
balancing policies in the following order: (1) route requests
to instances that have previously handled requests from the
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same customer to maximize KV cache reuse [17, 66, 77]; (2)
concentrate load to reduce energy consumption [69]; and (3)
distribute requests across VMs to optimize performance.
Instance Configurator. To run the local LLM instances, we
use vLLM [27], a state-of-the-art LLM inference platform.
Note that TAPAS can also integrate with other platforms (e.g.,
TensorRT-LLM [47]) with only minor interface modifications.
The LLM inference engine provides an HTTP REST API that
receives requests from the Load Balancer.

The local TAPAS controller receives the updated thermal
and power profiles for that server on aweekly basis. This con-
troller runs for every LLM iteration to estimate the optimal
operational settings (including GPU frequency, batch size,
model parallelism, model size, and quantization). These com-
putations are lightweight and cached for efficiency. If needed,
the controller updates the settings for each instance running
on the VM. It also restarts the LLM instance if changes to
model parallelism, model size, or quantization are necessary.

4.6 Generalizing TAPAS
The design principles of TAPAS can be applied to other
classes of workloads. While SaaS VMs can run any work-
load, TAPAS components may require adjustments. For ex-
ample, the Instance Configurator would need to be trained
differently and use configuration knobs tailored to specific
workloads. In contrast, IaaS workloads are already treated
as opaque-boxes in TAPAS, allowing them to run different
workload types without requiring any changes in the system.

Similarly, our insights can be applied to diverse datacen-
ter infrastructures. Our analysis includes three datacenters
from organizations with distinct characteristics. The pre-
diction models need to use datacenter-specific regression
functions, which vary based on the organization, the phys-
ical placements of servers within the datacenter, and the
cooling mechanisms (e.g., liquid vs. air cooling).

5 Evaluation
5.1 Methodology

Policies.As a Baseline, we use a thermal- and power-oblivious
system with traditional VM placement [21] and LLM re-
quest routing [1] without any reconfiguration. We imple-
ment TAPAS as detailed in Section 4.5 and evaluate six addi-
tional variations to assess the impact of each component, as
well as their combinations, on VM placement (Place), request
routing (Route), and instance configuration (Config).
Workload. For VM arrivals, we use a one-week production
trace from one of the A100 datacenters [46] with a 50/50 split
between IaaS and SaaS workloads. This covers around one
thousand servers with thousands of GPUs. For SaaS LLM
inference, we use Llama2 [72] with the profile from Figure 17.
The requests are a subset from 10 endpoints, each with a VM
count between 23 and 100 (Figure 15b).
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Figure 19. Peak power over 1-hour for Baseline and TAPAS
while running real cluster experiments.
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Figure 20. Peak power and maximum temperature over 1-
week for Baseline and TAPAS for large-scale simulations.

Real cluster.We conduct real experiments using a scaled-
down version of the production trace, emulating two rows
of 80 A100 servers with a 50/50 IaaS/SaaS mix over one hour.
For IaaS, we use historical power readings directly without
modifying the workloads besides VM placement across rows.
For SaaS, we collect LLM inference invocation traces across
endpoints and replay the traces using Llama2 models [72].
Simulation. To evaluate TAPAS at scale and compare poli-
cies under consistent conditions, we built a discrete-time
simulator that models our datacenters as described in Sec-
tion 2. This simulator replicates the load of IaaS VMs and
the execution of LLM inference requests in SaaS VMs.

For cooling modeling, we use Equations (1) to (3). We eval-
uated various regression models, including random forests,
multi-layer perceptrons, linear, polynomial, and piecewise
polynomial regressions. Piecewise polynomial achieved an
MAE of <1°C, offering fast computation, efficient storage,
and effective generalization for unseen values (e.g., random
forests tend to overfit and struggle to predict temperatures
lower than those in the training set). These models simu-
late server temperatures based on IaaS power data and LLM
inference requests for SaaS.

For power, the simulator uses real IaaS power readings and
maps inference load to power consumption for each SaaS VM
(Equation (4)). It also tracks capping events by simulating
their impact on both cooling and power infrastructure.

5.2 TAPAS operation

Real cluster. Figure 19 shows the peak row power for the 80
servers in the two rows measured at 1-minute intervals com-
paring the Baseline and TAPAS. During regular operations,
TAPAS effectively reduces peak power, maintaining latency
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Figure 21. Normalized maximum temperature and peak power varying the policy and fraction of SaaS and IaaS workloads.
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Figure 22. Time spent under thermal and power capping
varying the oversubscription ratio for Baseline and TAPAS.

SLOs and result quality, achieving a 20% reduction in peak
utilization compared to Baseline. This experiment shows a
4% absolute error compared to the simulation, validating the
accuracy of our simulator.
Simulation. Extending to large-scale simulations, Figure 20
shows the maximum temperature and row power over 5-
minute intervals for one week. Compared to Baseline, TAPAS
reduces the maximum temperature by 15% and peak power
by 24%, all without hurting result quality.
Ablation study. Figure 21 shows the maximum temperature
(top) and peak power (bottom) for the Baseline and variations
of TAPAS over one week, normalized to the maximum provi-
sioned values (indicated by the black lines). Importantly, all
policies operate without affecting quality or causing SLO vio-
lations under normal conditions. For a 50/50 mix of IaaS/SaaS
workloads (middle), each individual policy reduces both tem-
perature and power by up to 12% compared to the Baseline,
achieving these reductions by balancing or lowering the lo-
cal load. Place performs slightly better, as it balances both
IaaS and SaaS workloads across rows, while Route and Config
focus on optimizing only SaaS workloads. Although combin-
ing two components yields additional improvements, TAPAS
achieves the largest reductions in temperature and power
(17% and 23%, respectively) through a holistic approach that
integrates placement, routing, and configuration.
Sensitivity to IaaS/SaaS fraction. Figure 21 shows the
maximum temperature and power varying the SaaS/IaaS
fractions. As expected, when the workload is entirely IaaS,

Power Emergency Thermal Emergency
Baseline TAPAS Baseline TAPAS

IaaS SaaS IaaS SaaS IaaS SaaS IaaS SaaS

Perf -35% -28% 0% +16% -22% -19% 0% +10%
Quality 0% 0% 0% -12% 0% 0% 0% -6%

Table 2. Comparison of Baseline and TAPAS in power and
thermal emergencies across IaaS and SaaS

TAPAS’s effectiveness is limited to VM placement. Con-
versely, TAPAS achieves maximum reductions in temper-
ature (23%) and power (28%) compared to the Baseline when
the workload is entirely SaaS, due to its flexibility.

5.3 Oversubscription
We analyze the effectiveness of TAPAS in scenarios where
the thermal and power infrastructures are oversubscribed.
Figure 22 shows the fraction of time during which thermal
and power capping occurs as racks are added to the data-
center. As expected, a datacenter without oversubscription
(None) experiences no capping due to thermal or power con-
straints under Baseline and TAPAS. However, as additional
servers are added, the Baseline quickly begins to experience
capping events, especially once oversubscription exceeds
20%. In contrast, TAPAS supports up to 40% more servers
without impacts on quality of results while maintaining ther-
mal and power capping below 0.7% of the time, enabling safe
thermal and power oversubscription.

5.4 Failure management
In the event of thermal (AHU) or power (UPS) failures, data-
centers must immediately adapt to reduced capacity limits of
90% and 75%, respectively. Table 2 compares the performance
and quality impact on Baseline and TAPAS over a 5-minute
peak load period. As precise IaaS performance impact is chal-
lenging to measure, we present the effects on both IaaS and
SaaS workloads as the percentage of frequency capped rela-
tive to maximum frequency, adjusted by the fraction of work-
loads affected. To stay within constraints, Baseline applies
uniform frequency caps up to 35% across servers, leading
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to significant performance drops. In contrast, TAPAS main-
tains (or even improves) performance with up to 12% quality
impact (i.e., accuracy drop by number of requests directed
to smaller models). TAPAS effectively manages temperature
and power through selective actions, such as routing requests
to smaller models only when necessary.

6 Related work

Datacenter cooling management. Researchers [18, 20, 25,
38, 43, 50] proposed adaptive cooling systems to address
thermal hotspots and enhance cooling efficiency through op-
timized thermal control with various technologies (e.g., warm
water [50], immersion-cooling [43], and free-cooling [20]).
CoolProvision [38] optimizes under-provisioned coolingwhile
maintaining performance. Instead, TAPAS reduces hotspots
in LLM inference clusters through VM placement, request
routing, and instance configuration.
Thermal-aware scheduling. Prior work optimizes data-
center job placement to reduce thermal issues [10, 11, 29,
62, 64, 73]. For example, RT-TAS [29] proposes a thermally-
balanced task-to-core assignment for integrated GPU-CPU
platforms while PTDS [11] optimizes VM-to-host scheduling
to prevent hotspots and reduce cooling energy. However,
traditional thermal- or power-aware scheduling approaches
yield suboptimal results in LLM serving due to their unique
challenges, as discussed in Section 3.
Datacenter power management. To improve datacenter
power utilization, Flex [83] safely oversubscribes reserved
power through offline workload placement and online load
shedding. SmartOClock [68] distributes power budgets effi-
ciently through power predictions for workload-aware over-
clocking. SmoothOperator [22] spreads services with syn-
chronous power patterns evenly across the datacenter to
reduce peak power draw. TAPAS contributes to power uti-
lization improvement focusing on LLM inference clusters.
LLM serving. Recent works explore unique GPU and LLM
serving characteristics [56, 65, 67], challenges [35], and op-
portunities [69] for power and energy. POLCA [48] intro-
duces a power oversubscription framework for LLM infer-
ence clusters. 𝜇-Serve [53] enables power-aware LLM serving
through model parallelism and predictive request schedul-
ing. Other LLM serving optimizations orthogonal to TAPAS
include key-value cache management [27], continuous batch-
ing [81], scheduling [54, 78], autoscaling [26], prefill-decode
interference reduction [1, 49, 85], hardware heterogeneity [49,
75, 76, 80], and geographical load balancing [31].

7 Conclusions
We introduced TAPAS, a system for thermal- and power-
aware scheduling of LLM inference in GPU datacenters,
leveraging VM placement, request routing, and instance
configuration, while maintaining performance and quality.

TAPAS maximizes cooling and power efficiency with mini-
mal quality impact, effectively reducing thermal/power peaks,
supporting oversubscription, and handling failures.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Lingjia
Tang, for their valuable feedback and constructive sugges-
tions that helped improve this paper. Jovan Stojkovic and
Josep Torrellas were partially supported by NSF under grants
CNS 1956007, CCF 2107470, and CCF 2316233.

References
[1] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun

Kwatra, Bhargav Gulavani, Alexey Tumanov, and Ramachandran Ram-
jee. Taming Throughput-Latency Tradeoff in LLM Inference with
Sarathi-Serve. In 18th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), 2024.

[2] Paula Aguilera, Jungseob Lee, Amin Farmahini-Farahani, Katherine
Morrow, Michael Schulte, and Nam Sung Kim. Process variation-
aware workload partitioning algorithms for GPUs supporting spatial-
multitasking. In DATE, 2014.

[3] Google AI. Gemini API Developer Docs. https://ai.google.dev/gemini-
api/docs, 2024.

[4] Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, Karen Khatamifard,
Minsik Cho, Carlo C Del Mundo, Mohammad Rastegari, and Mehrdad
Farajtabar. LLM in a flash: Efficient Large Language Model Inference
with Limited Memory. arXiv preprint arXiv:2312.11514, 2024.

[5] Azure. Azure Machine Learning - ML as a Service. https://azure.
microsoft.com/en-us/products/machine-learning/, 2024.

[6] Microsoft Azure. ‘ND’ sub-family GPU accelerated virtual machine
size series. https://learn.microsoft.com/en-us/azure/virtual-machines/
sizes/gpu-accelerated/nd-family, 2024.

[7] Hicham Badri and Appu Shaji. Half-quadratic quantization of large
machine learning models, November 2023.

[8] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The Datacenter as
a Computer: An Introduction to the Design of Warehouse-Scale Machines.
Springer, 2013.

[9] Jairus Bowne. Using Large Language Models in Learning and Teach-
ing. https://biomedicalsciences.unimelb.edu.au/study/dlh/assets/
documents/large-language-models-in-education/llms-in-education,
2024.

[10] Muhammad Tayyab Chaudhry, Teck Chaw Ling, Atif Manzoor,
Syed Asad Hussain, and Jongwon Kim. Thermal-aware scheduling in
green data centers. ACM Computing Surveys, 47(3), feb 2015.

[11] Rui Chen, Bo Liu, WeiWei Lin, JianPeng Lin, HuiWen Cheng, and
KeQin Li. Power and thermal-aware virtual machine scheduling opti-
mization in cloud data center. Future Generation Computer Systems,
145:578–589, 2023.

[12] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Erik
Jul, Christian Limpach, Ian Pratt, and AndrewWarfield. Live Migration
of Virtual Machines. In Proceedings of the Symposium on Networked
Systems Design and Implementation (NSDI), 2005.

[13] Google Cloud. GPU machine types. https://cloud.google.com/
compute/docs/gpus/, 2024.

[14] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher
Ré. FlashAttention: Fast and Memory-Efficient Exact Attention with
IO-Awareness. arXiv preprint arXiv:2205.14135, 2022.

[15] Hafiz M Daraghmeh and Chi-Chuan Wang. A review of current status
of free cooling in datacenters. Applied Thermal Engineering, 114:1224–
1239, 2017.

[16] Energy.gov. Evaporative Coolers. https://www.energy.gov/
energysaver/evaporative-coolers, 2024.

https://ai.google.dev/gemini-api/docs
https://ai.google.dev/gemini-api/docs
https://azure.microsoft.com/en-us/products/machine-learning/
https://azure.microsoft.com/en-us/products/machine-learning/
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/nd-family
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/gpu-accelerated/nd-family
https://biomedicalsciences.unimelb.edu.au/study/dlh/assets/documents/large-language-models-in-education/llms-in-education
https://biomedicalsciences.unimelb.edu.au/study/dlh/assets/documents/large-language-models-in-education/llms-in-education
https://cloud.google.com/compute/docs/gpus/
https://cloud.google.com/compute/docs/gpus/
https://www.energy.gov/energysaver/evaporative-coolers
https://www.energy.gov/energysaver/evaporative-coolers


ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jovan Stojkovic et al.

[17] Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic,
Junbo Deng, Xingkun Yang, Zhou Yu, and Pengfei Zuo. Cost-Efficient
Large Language Model Serving for Multi-turn Conversations with
CachedAttention. In USENIX Annual Technical Conference (USENIX
ATC), 2024.

[18] Hanfei Geng, Yi Sun, Yuanzhe Li, Jichao Leng, Xiangyu Zhu, Xianyuan
Zhan, Yuanchun Li, Feng Zhao, and Yunxin Liu. TESLA: Thermally
Safe, Load-Aware, and Energy-Efficient Cooling Control System for
Data Centers. In ICPP, 2024.

[19] GitHub. The world’s most widely adopted AI developer tool. https:
//github.com/features/copilot, 2024.

[20] Íñigo Goiri, Thu D. Nguyen, and Ricardo Bianchini. CoolAir:
Temperature- and Variation-Aware Management for Free-Cooled Dat-
acenters. In Proceedings of the 20th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2015.

[21] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E
Greeff, David Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark
Russinovich, and Thomas Moscibroda. Protean: VMAllocation Service
at Scale. In Proceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2020.

[22] Chang-Hong Hsu, Qingyuan Deng, Jason Mars, and Lingjia Tang.
SmoothOperator: Reducing Power Fragmentation and Improving
Power Utilization in Large-Scale Datacenters. In Proceedings of the
23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2018.

[23] Urs Hölzle. Our commitment to climate-conscious data center
cooling. https://blog.google/outreach-initiatives/sustainability/our-
commitment-to-climate-conscious-data-center-cooling/, 2022.

[24] Majid Jalili, Ioannis Manousakis, Íñigo Goiri, Pulkit A. Misra, Ashish
Raniwala, Husam Alissa, Bharath Ramakrishnan, Phillip Tuma, Chris-
tian Belady, Marcus Fontoura, and Ricardo Bianchini. Cost-Efficient
Overclocking in Immersion-Cooled Datacenters. In Proceedings of the
48th Annual International Symposium on Computer Architecture (ISCA),
2021.

[25] Weixiang Jiang, Ziyang Jia, Sirui Feng, Fangming Liu, and Hai Jin.
Fine-grained warm water cooling for improving datacenter economy.
In Proceedings of the 46th International Symposium on Computer Archi-
tecture (ISCA), 2019.

[26] Andreas Kosmas Kakolyris, Dimosthenis Masouros, Sotirios Xydis,
and Dimitrios Soudris. SLO-aware GPU DVFS for energy-efficient
LLM inference serving. IEEE Computer Architecture Letters, 2024.

[27] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica.
Efficient Memory Management for Large Language Model Serving
with PagedAttention. In Proceedings of the Symposium on Operating
Systems Principles (SOSP), 2023.

[28] Marina Lammertyn. 60+ ChatGPT Statistics And Facts You Need to
Know in 2024. https://blog.invgate.com/chatgpt-statistics, 2024.

[29] Youngmoon Lee, Kang G. Shin, and Hoon Sung Chwa. Thermal-Aware
Scheduling for Integrated CPUs–GPU Platforms. ACM Transactions
on Embedded Computing Systems (TECS), 2019.

[30] Baolin Li, Yankai Jiang, Vijay Gadepally, and Devesh Tiwari. LLM
Inference Serving: Survey of Recent Advances and Opportunities.
arXiv preprint arXiv:2407.12391, 2024.

[31] Pengfei Li, Jianyi Yang, Adam Wierman, and Shaolei Ren. Towards
environmentally equitable AI via geographical load balancing. In
Proceedings of the 15th ACM International Conference on Future and
Sustainable Energy Systems, pages 291–307, 2024.

[32] Shaohong Li, Xi Wang, Xiao Zhang, Vasileios Kontorinis, Sreekumar
Kodakara, David Lo, and Parthasarathy Ranganathan. Thunderbolt:
Throughput-Optimized, Quality-of-Service-Aware Power Capping at
Scale. In Proceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2020.

[33] Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi,
Shengen Yan, Guohao Dai, Huazhong Yang, and Yu Wang. Evaluating
quantized large language models. arXiv preprint arXiv:2402.18158,
2024.

[34] Yang Li, Charles R Lefurgy, Karthick Rajamani, Malcolm S Allen-Ware,
Guillermo J Silva, Daniel D Heimsoth, Saugata Ghose, and Onur Mutlu.
A scalable priority-aware approach to managing data center server
power. In Proceedings of the IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2019.

[35] Yuzhuo Li, Mariam Mughees, Yize Chen, and Yunwei Ryan Li. The
Unseen AI Disruptions for Power Grids: LLM-Induced Transients.
arXiv preprint arXiv:2409.11416, 2024.

[36] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng,
Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. AlpaServe: Statistical Multiplexing with Model Paral-
lelism for Deep Learning Serving. In Proceedings of the Symposium on
Operating Systems Design and Implementation (OSDI ’23), 2023.

[37] Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao,
Chuang Gan, and Song Han. QServe: W4A8KV4 Quantization and
System Co-design for Efficient LLM Serving, 2024.

[38] Ioannis Manousakis, Íñigo Goiri, Sriram Sankar, Thu D. Nguyen, and
Ricardo Bianchini. CoolProvision: underprovisioning datacenter cool-
ing. In Proceedings of the 6th ACM Symposium on Cloud Computing
(SoCC), 2015.

[39] David Meisner, Brian T Gold, and Thomas F Wenisch. Powernap:
eliminating server idle power. ACM SIGARCH Computer Architecture
News, 37(1):205–216, 2009.

[40] Meta. 2024 Sustainability Report. https://sustainability.atmeta.com/
2024-sustainability-report/, 2024.

[41] Meta. Llama3-70B. https://huggingface.co/meta-llama/Meta-Llama-
3-70B-Instruct, 2024.

[42] Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin
Cui, and Zhihao Jia. SpotServe: Serving Generative Large Language
Models on Preemptible Instances. In Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2024.

[43] Dongmoon Min, Ilkwon Byun, Gyu-hyeon Lee, and Jangwoo
Kim. CoolDC: A Cost-Effective Immersion-Cooled Datacenter with
Workload-Aware Temperature Scaling. ACM Transactions on Architec-
ture and Code Optimization (TACO), 2024.

[44] NVIDIA. Cooling and Airflow Optimization. https:
//docs.nvidia.com/dgx-superpod/design-guides/dgx-superpod-
data-center-design-h100/latest/cooling.html, 2024.

[45] NVIDIA. DGX H100: AI for Enterprise. https://www.nvidia.com/en-
us/data-center/dgx-h100/, 2024.

[46] NVIDIA. Introduction to the NVIDIA DGX A100 System.
https://docs.nvidia.com/dgx/dgxa100-user-guide/introduction-
to-dgxa100.html, 2024.

[47] NVIDIA. TensorRT-LLM’s Documentation. https://nvidia.github.io/
TensorRT-LLM/, 2024.

[48] Pratyush Patel, Esha Choukse, Chaojie Zhang, Íñigo Goiri, Brijesh
Warrier, Nithish Mahalingam, and Ricardo Bianchini. Characterizing
Power Management Opportunities for LLMs in the Cloud. In Proceed-
ings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2024.

[49] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo
Goiri, Saeed Maleki, and Ricardo Bianchini. Splitwise: Efficient gen-
erative LLM inference using phase splitting. In Proceedings of the
51st Annual International Symposium on Computer Architecture (ISCA),
2024.

[50] Qiangyu Pei, Shutong Chen, Qixia Zhang, Xinhui Zhu, Fangming
Liu, Ziyang Jia, Yishuo Wang, and Yongjie Yuan. CoolEdge: hotspot-
relievable warmwater cooling for energy-efficient edge datacenters. In
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),

https://github.com/features/copilot
https://github.com/features/copilot
https://blog.google/outreach-initiatives/sustainability/our-commitment-to-climate-conscious-data-center-cooling/
https://blog.google/outreach-initiatives/sustainability/our-commitment-to-climate-conscious-data-center-cooling/
https://blog.invgate.com/chatgpt-statistics
https://sustainability.atmeta.com/2024-sustainability-report/
https://sustainability.atmeta.com/2024-sustainability-report/
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://docs.nvidia.com/dgx-superpod/design-guides/dgx-superpod-data-center-design-h100/latest/cooling.html
https://docs.nvidia.com/dgx-superpod/design-guides/dgx-superpod-data-center-design-h100/latest/cooling.html
https://docs.nvidia.com/dgx-superpod/design-guides/dgx-superpod-data-center-design-h100/latest/cooling.html
https://www.nvidia.com/en-us/data-center/dgx-h100/
https://www.nvidia.com/en-us/data-center/dgx-h100/
https://docs.nvidia.com/dgx/dgxa100-user-guide/introduction-to-dgxa100.html
https://docs.nvidia.com/dgx/dgxa100-user-guide/introduction-to-dgxa100.html
https://nvidia.github.io/TensorRT-LLM/
https://nvidia.github.io/TensorRT-LLM/


TAPAS: Thermal- and Power-Aware Scheduling for LLM Inference in Cloud Platforms ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

2022.
[51] Steven Pelley, David Meisner, Pooya Zandevakili, Thomas F. Wenisch,

and Jack Underwood. Power routing: dynamic power provisioning in
the data center. In Proceedings of the Fifteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2010.

[52] Cheng Peng, Xi Yang, Aokun Chen, Kaleb Smith, Nima PourNeja-
tian, Anthony Costa, Cheryl Martin, Mona Flores, Ying Zhang, Tanja
Magoc, Gloria Lipori, Mitchell Duane, NaykkyOspina,Mustafa Ahmed,
William Hogan, Elizabeth Shenkman, Yi Guo, Jiang Bian, and Yonghui
Wu. A study of generative large language model for medical research
and healthcare. npj Digital Medicine, 2023.

[53] Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha,
ChenWang, Hubertus Franke, Zbigniew Kalbarczyk, Tamer Başar, and
Ravishankar K. Iyer. Power-aware Deep Learning Model Serving with
𝜇-Serve. In USENIX Annual Technical Conference (USENIX ATC), 2024.

[54] Haoran Qiu, Weichao Mao, Archit Patke, Shengkun Cui, Saurabh Jha,
Chen Wang, Hubertus Franke, Zbigniew T. Kalbarczyk, Tamer Başar,
and Ravishankar K. Iyer. Efficient Interactive LLM Serving with Proxy
Model-based Sequence Length Prediction. In The 5th International
Workshop on Cloud Intelligence / AIOps at ASPLOS 2024, 2024.

[55] Varun Sakalkar, Vasileios Kontorinis, David Landhuis, Shaohong Li,
Darren De Ronde, Thomas Blooming, Anand Ramesh, James Kennedy,
Christopher Malone, Jimmy Clidaras, et al. Data Center Power Over-
subscription with a Medium Voltage Power Plane and Priority-Aware
Capping. In Proceedings of the 25th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2020.

[56] Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam
Michaleas, Michael Jones, William Bergeron, Jeremy Kepner, Devesh
Tiwari, and Vijay Gadepally. FromWords to Watts: Benchmarking the
Energy Costs of Large Language Model Inference. In Proceedings of
the High Performance Extreme Computing Conference (HPEC), 2023.

[57] Philipp Schmid. Deploy LLMs with Hugging Face Inference Endpoints.
https://huggingface.co/blog/inference-endpoints-llm, 2024.

[58] AmazonWeb Services. Amazon EC2 P4 Instances. https://aws.amazon.
com/ec2/instance-types/p4/, 2020.

[59] AmazonWeb Services. Amazon EC2 P5 Instances. https://aws.amazon.
com/ec2/instance-types/p5/, 2024.

[60] Amazon Web Services. Amazon SageMaker - Machine Learning Ser-
vices. https://aws.amazon.com/sagemaker/, 2024.

[61] AmazonWeb Services. Meta Llama 3 models are now available in Ama-
zon SageMaker JumpStart. https://aws.amazon.com/blogs/machine-
learning/meta-llama-3-models-are-now-available-in-amazon-
sagemaker-jumpstart/, 2024.

[62] Bing Shi and Ankur Srivastava. Thermal and power-aware task sched-
uling for Hadoop based storage centric datacenters. In International
Conference on Green Computing (ICGC), 2010.

[63] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-LM: Training Multi-
Billion Parameter Language Models Using Model Parallelism. arXiv
preprint arXiv:1909.08053, 2019.

[64] Matt Skach, Manish Arora, Dean Tullsen, Lingjia Tang, and Jason Mars.
Virtual Melting Temperature: Managing Server Load to Minimize
Cooling Overhead with Phase Change Materials. In ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA), 2018.

[65] Matej Spetko, Ondrej Vysocky, Branislav Jansik, and Lubomir Riha.
DGX-A100 Face to Face DGX-2—Performance, Power and Thermal
Behavior Evaluation. Energies, 14(2):376, 2021.

[66] Vikranth Srivatsa, Zijian He, Reyna Abhyankar, Dongming Li, and
Yiying Zhang. Preble: Efficient Distributed Prompt Scheduling for
LLM Serving. arXiv preprint arXiv:2407.00023, 2024.

[67] Jovan Stojkovic, Esha Choukse, Chaojie Zhang, Íñigo Goiri, and Josep
Torrellas. Towards Greener LLMs: Bringing Energy-Efficiency to the
Forefront of LLM Inference. arXiv preprint arXiv:2403.20306, 2024.

[68] Jovan Stojkovic, Pulkit Misra, Íñigo Goiri, Sam Whitlock, Esha
Choukse, Mayukh Das, Chetan Bansal, Jason Lee, Zoey Sun, Haoran
Qiu, Reed Zimmermann, Savyasachi Samal, Brijesh Warrier, Ashish
Raniwala, and Ricardo Bianchini. SmartOClock: Workload- and Risk-
Aware Overclocking in the Cloud. In Proceedings of the International
Symposium on Computer Architecture (ISCA), 2024.

[69] Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, and Esha
Choukse. DynamoLLM: Designing LLM Inference Clusters for Perfor-
mance and Energy Efficiency. In Proceedings of the IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2025.

[70] Christopher Tearpak. LLM RAG: Deploy LLM Inference Endpoints &
Optimize Output with RAG. https://techcommunity.microsoft.com/
t5/startups-at-microsoft/llm-rag-deploy-llm-inference-endpoints-
amp-optimize-output-with/ba-p/4222636, 2024.

[71] Technology Innovation Institute (TII). Falcon-180B. https://
huggingface.co/tiiuae/falcon-180B, 2024.

[72] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[73] Nedeljko Vasic, Thomas Scherer, andWolfgang Schott. Thermal-aware
workload scheduling for energy efficient data centers. In Proceedings of
the 7th International Conference on Autonomic Computing (ICAC 2010),
page 169–174, New York, NY, USA, 2010. Association for Computing
Machinery.

[74] Xiaorui Wang, Ming Chen, Charles Lefurgy, and Tom W Keller. SHIP:
Scalable Hierarchical Power Control for Large-Scale Data Centers. In
Proceedings of the 18th International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2009.

[75] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,
Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. MLaaS in the
wild: Workload analysis and scheduling in large-scale heterogeneous
GPU clusters. In Proceedings of the 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 2022), pages 945–960,
2022.

[76] Grant Wilkins, Srinivasan Keshav, and Richard Mortier. Hybrid hetero-
geneous clusters can lower the energy consumption of LLM inference
workloads. In Proceedings of the 15th ACM International Conference on
Future and Sustainable Energy Systems, pages 506–513, 2024.

[77] Bingyang Wu, Shengyu Liu, Yinmin Zhong, Peng Sun, Xuanzhe Liu,
and Xin Jin. LoongServe: Efficiently Serving Long-context Large
Language Models with Elastic Sequence Parallelism. arXiv preprint
arXiv:2404.09526, 2024.

[78] Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang, Xuanzhe Liu,
and Xin Jin. Fast distributed inference serving for large language
models. arXiv preprint arXiv:2305.05920, 2023.

[79] Qiang Wu, Qingyuan Deng, Lakshmi Ganesh, Chang-Hong Hsu, Yun
Jin, Sanjeev Kumar, Bin Li, Justin Meza, and Yee Jiun Song. Dynamo:
Facebook’s Data Center-Wide Power Management System. In Proceed-
ings of the International Symposium on Computer Architecture (ISCA),
2016.

[80] Zhisheng Ye, Wei Gao, Qinghao Hu, Peng Sun, Xiaolin Wang, Yingwei
Luo, Tianwei Zhang, and Yonggang Wen. Deep learning workload
scheduling in GPU datacenters: A survey. ACM Computing Surveys,
56(6):1–38, 2024.

[81] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim,
and Byung-Gon Chun. Orca: A Distributed Serving System for
Transformer-Based Generative Models. In Proceedings of the 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2022.

[82] Lingfan Yu and Jinyang Li. Stateful Large Language Model Serving
with Pensieve. arXiv preprint arXiv:2312.05516, 2023.

[83] Chaojie Zhang, Alok Gautam Kumbhare, Ioannis Manousakis, Deli
Zhang, Pulkit A.Misra, RodAssis, KyleWoolcock, NithishMahalingam,

https://huggingface.co/blog/inference-endpoints-llm
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/p5/
https://aws.amazon.com/ec2/instance-types/p5/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/blogs/machine-learning/meta-llama-3-models-are-now-available-in-amazon-sagemaker-jumpstart/
https://aws.amazon.com/blogs/machine-learning/meta-llama-3-models-are-now-available-in-amazon-sagemaker-jumpstart/
https://aws.amazon.com/blogs/machine-learning/meta-llama-3-models-are-now-available-in-amazon-sagemaker-jumpstart/
https://techcommunity.microsoft.com/t5/startups-at-microsoft/llm-rag-deploy-llm-inference-endpoints-amp-optimize-output-with/ba-p/4222636
https://techcommunity.microsoft.com/t5/startups-at-microsoft/llm-rag-deploy-llm-inference-endpoints-amp-optimize-output-with/ba-p/4222636
https://techcommunity.microsoft.com/t5/startups-at-microsoft/llm-rag-deploy-llm-inference-endpoints-amp-optimize-output-with/ba-p/4222636
https://huggingface.co/tiiuae/falcon-180B
https://huggingface.co/tiiuae/falcon-180B


ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jovan Stojkovic et al.

Brijesh Warrier, David Gauthier, Lalu Kunnath, Steve Solomon, Os-
valdo Morales, Marcus Fontoura, and Ricardo Bianchini. Flex: High-
Availability Datacenters with Zero Reserved Power. In Proceedings
of the 48th Annual International Symposium on Computer Architecture
(ISCA), 2021.

[84] Youpeng Zhao Zhao, Di Wu Wu, and Jun Wang. ALISA: Accelerating
Large Language Model Inference via Sparsity-Aware KV Caching. In
Proceedings of the 51st Annual International Symposium on Computer
Architecture (ISCA), 2024.

[85] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xu-
anzhe Liu, Xin Jin, and Hao Zhang. DistServe: Disaggregating Prefill
and Decoding for Goodput-optimized Large Language Model Serv-
ing. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2024.

[86] Zhe Zhou, Xuechao Wei, Jiejing Zhang, and Guangyu Sun. PetS: A
Unified Framework for Parameter-Efficient Transformers Serving. In
Proceedings of the USENIX Annual Technical Conference (USENIX ATC),
2022.


	Abstract
	1 Introduction
	2 Characterizing Challenges in Thermal and Power Infrastructure for GPUs
	2.1 Cooling
	2.2 Power

	3 Characterizing Opportunities in Thermal and Power Properties of GPU Workloads
	3.1 GPU workload placement
	3.2 LLM inference routing
	3.3 LLM inference instance configuration

	4 TAPAS Design
	4.1 Workload placement
	4.2 Request Routing
	4.3 Instance configuration
	4.4 Oversubscription and failures
	4.5 Implementation
	4.6 Generalizing TAPAS

	5 Evaluation
	5.1 Methodology
	5.2 TAPAS operation
	5.3 Oversubscription
	5.4 Failure management

	6 Related work
	7 Conclusions
	References

