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Abstract—Operating server components beyond their voltage
and power design limit (i.e., overclocking) enables improving
performance and lowering cost for cloud workloads. However,
overclocking can significantly degrade component lifetime, in-
crease power draw, and cause power capping events, eventually
diminishing the performance benefits.

In this paper, we characterize the impact of overclocking
on cloud workloads by studying their profiles from production
deployments. Based on the characterization insights, we propose
SmartOClock, the first distributed overclocking management
platform specifically designed for cloud environments. SmartO-
Clock is a workload-aware scheme that relies on power predic-
tions to heterogeneously distribute the power budgets across its
servers based on their needs and then enforce budget compliance
locally, per-server, in a decentralized manner.

SmartOClock reduces the tail latency by 9%, application cost
by 30% and total energy consumption by 10% for latency-
sensitive microservices on a 36-server deployment. Simulation
analysis using production traces show that SmartOClock reduces
the number of power capping events by up to 95% while
increasing the overclocking success rate by up to 62%. We also
describe lessons from building a first-of-its-kind overclockable
cluster in Microsoft Azure for production experiments.

I. INTRODUCTION

Motivation. Cloud services provision resources to meet their
peak performance requirements [21], [25], [39], [62], [81].
For example, many services need to keep their high-percentile
latency (e.g., P99) below a predetermined Service-Level Ob-
jective (SLO) [24]. These services incur high operating costs to
reserve enough resources for handling infrequent load spikes
and leave a substantial portion underutilized or even idle for
the majority of time when their load is below its peak.

As an example, Figure 1 illustrates the aggregate load
pattern on a typical weekday of three services that are part of
Microsoft’s productivity and collaboration suite. Collectively,
these three services use ~1M virtual cores (across regions) to
handle peaks that last for a few hours per day - between 10
am to noon for Service A and 5 minutes at the top and bottom
of the hour for the other two services.

Emerging cloud paradigms, such as autoscaling [4], [33],
[71] and serverless computing [5], [35], [45], [70], can be
used to dynamically remove and add Virtual Machine (VM)
instances for managing cost. However, these solutions (1) can
increase the application’s tail latency as booting up a new
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Fig. 1: Load pattern on a typical weekday in one region.
Utilization normalized to the peak of each service.

VM can take up to a few minutes [1], and (2) cannot be
easily applied for stateful services [46], [69]. Hence, many
applications still statically provision for infrequent load spikes.

On the other hand, advances in processing and datacenter
cooling technologies have enabled component (e.g., CPU,
GPU) overclocking, i.e., operation beyond typical voltage and
power design limit [51]. Overclocking boosts a workload’s
performance and enables handling transient load spikes in a
cost-efficient manner. For example, CPU overclocking during
a service’s peak can keep the tail latency below the required
SLO, while saving cost by reducing provisioned resources.

However, overclocking is not free. If used naively, it in-
creases power draw and can cause frequent power capping
events that diminish performance benefits. Worse, it degrades
component lifetime (or reliability) through accelerated wear-
out and, thus, cannot be used indefinitely. The limited amount
of overclocking needs to be used smartly as it may not
benefit all workloads at all times: (1) overclocking the CPU
of a memory-bound workload, or (2) overclocking a workload
while experiencing a low load will not provide much benefit.
Finally, providers also need to protect workload SLOs when
overclocking is unavailable. For example, a workload might
have under-provisioned due to reliance on overclocking, but
it would miss its SLOs under peak load if its VMs cannot
be overclocked. Therefore, providers must use overclocking
carefully while managing the associated risks.

Our work. For efficient use of overclocking in the cloud, we
analyze cloud workloads and production traces, including the
services from Figure 1. We observe the following. First, over-
clocking improves the performance of popular cloud work-
loads. However, a workload-agnostic overclocking scheme



is suboptimal and often leads to missed SLOs or wasted
overclocking cycles. Second, power and lifetime headroom
exists to overclock most of the times without triggering power
capping or compromising on reliability. Third, resource utiliza-
tion history can be used to predict the availability of power and
reliability impact from overclocking. Fourth, servers’ power
draw within a power delivery unit (e.g., a rack) is diverse, but
the limit is still evenly distributed which disproportionately
hurts performance of power-hungry servers during a capping
event. However, predictability in power draw enables assigning
heterogeneous limits. Finally, a decentralized approach for
power draw enforcement enables servers to find an efficient
limit in case of initial assignment mispredictions.

We use the characterization insights to design SmartOClock,
the first distributed overclocking management platform for the
cloud. It enables a wide variety of cloud workloads to run with
high performance at a lower cost. SmartOClock achieves its
goals through four novel design principles.

First, SmartOClock uses bidirectional communication with
the application to maximize the application’s benefits from
overclocking. Applications can use metrics (e.g., latency, CPU
utilization) or schedule-based policies and the overclocking
decisions can be made based on instance- and deployment-
level monitoring. Second, it uses admission control to re-
serve power (from any headroom) and overclocking budget
for workloads. This step provides a predictable overclock-
ing experience for workloads and SmartOClock can take
corrective actions, like scale-out, if it is unable to honor
a reservation. Third, it leverages power predictability for
assigning heterogeneous server power budgets, which provide
better performance during capping for power safety. Finally,
SmartOClock makes decentralized overclocking decisions for
improved fault tolerance. Each server takes local decisions for
granting overclocking requests based on its assigned power
and overclocking budgets. It can also perform explorations to
revise inefficient assignments (e.g., due to mispredictions).

We evaluate SmartOClock on a real server cluster and
through simulations by using production traces. The cluster
evaluation is performed on 36 overclockable servers (across
2-racks) running latency-sensitive microservices as candidates
for overclocking and throughput-optimized power hungry ma-
chine learning (ML) training workloads, which are not over-
clocked. Our results show that SmartOClock reduces the P99
latency by 8.9% and application cost by 30.4% for latency-
sensitive microservices, and total cluster energy consumption
by 10% over state-of-the-art autoscaling solution. To vali-
date our findings at scale, we use traces from hundreds of
production racks and simulate SmartOClock. When compared
to all practical policies, SmartOClock reduces the number
of power capping events by up to 94.7% while increasing
the overclocking success rate by up to 61.8%. We have
also created a 2-rack overclockable cluster for production
experimentation and share some lessons in Section VI.

Related work. While there is a rich body of work on
CPU turbo-boost [16], [18], [30], [55], [74], [79], [101] and

datacenter power management [37], [57], [59], [80], [84], [94],
[97], overclocking introduces unique challenges not addressed
by the prior work. First, a cloud provider does not need to
manage any reliability impact from turbo since CPU vendors
design turbo to meet a provider’s lifetime requirements. Cloud
CPUs operate in performance mode, which always operates
them at the highest turbo frequency within constraints (e.g.,
power, thermal) [18], [82]. Vendors do not specify turbo timing
limitations nor advise software-level core wear leveling in
their warranty terms [8], [47], and non-judicious turbo use
does not degrade reliability [76]. Generally, CPU failure is
amongst the lowest types of failure in cloud servers [65], [91].
Second, the power oversubscription policies factor the higher
demand from turbo. Although this approach increases the total
cost of ownership, it is necessary to meet the performance
Service-Level Agreements (SLAs) [7], [36], [72]. In contrast,
overclocking (beyond turbo) further improves performance but
has a reliability impact that is not covered at design time by the
vendors. Furthermore, a provider does not need to provision
power for overclocking since turbo is sufficient to meet its
performance SLAs. Therefore, overclocking is opportunistic
- a provider needs to manage the power and reliability im-
pact, while protecting workload SLOs when overclocking is
unavailable; a problem setting not explored by prior work.

Summary. We make the following main contributions:

o We characterize the opportunities and challenges of over-
clocking cloud workloads, including the impact on power
and component lifetime.

« We propose SmartOClock, a distributed overclocking man-
agement platform specifically designed for the cloud.

o We evaluate SmartOClock in a real system running latency-
critical workloads, and using large-scale production traces.

o We share lessons from overclocking production workloads.

II. BACKGROUND

Power management in cloud datacenters. The power de-
livery system in a cloud datacenter is organized in a hi-
erarchy [57], [84], [94], [97]; the power budget of each
parent node is split equally among its children. As providers
oversubscribe power to improve utilization, the sum of the
peak power draw of children nodes can exceed the budget
of the parent (e.g., servers in a rack) [57], [84], [94]. Under
normal operation, child nodes can draw more than their even
share if the cumulative power is below the parent’s limit.
When it exceeds a threshold, power capping mechanisms (e.g.,
Intel RAPL [22], prioritized capping [57], [59]) are used for
safety. These mechanisms hurt performance as they reduce
CPU frequency and can even throttle memory to restrict server
power. To meet their performance SLAs, providers carefully
oversubscribe to minimize/avoid capping events.

Component overclocking. Prior work shows the feasibility
of overclocking in the cloud [51]. Overclocking operates
components (e.g., CPUs, GPUs) beyond their specifications
to get frequencies even higher than turbo [10], [50].



A large fraction of cloud workloads, such as search or
video conferencing [21], [89], are user-facing applications with
transient load spikes. These workloads collectively consume
millions of virtual cores to handle peak load. For Microsoft’s
productivity and collaboration services, although chat and
conference calls occur throughout the day, the peak that
governs resource provisioning lasts for a few hours each day
(Figure 1). Overclocking can be used during these peaks to
save costs. However, a provider needs to manage the risks
from overclocking. For example, for reliability management,
the peak duration needs to be within the daily overclocking
budget (e.g., 10% per day) that satisfies component lifetime
goals. Overclocking impacts reliability [3] due to three main
reasons: (1) gate oxide breakdown, (2) electro-migration, and
(3) thermal cycling. These processes are time-dependent and
accelerate the lifetime reduction. Prior work has showed
that there is an exponential relationship between temperature,
voltage, and component lifetime [27], [51], [66], [93], [96].

III. CHALLENGES AND OPPORTUNITIES

A successful overclocking management scheme needs to
satisfy workload performance requirements, while managing
the impact of overclocking on power and component lifetime.
To design such a scheme, we answer the following questions.

Q1: When do workloads benefit from overclocking? To
efficiently use overclocking, a cloud platform needs to under-
stand workloads’ behavior and needs. Treating VMs as opaque
and using workload performance proxies (e.g., instructions
per cycle (IPC), CPU utilization) for overclocking can be
suboptimal as the relationship between proxies and target
performance metric is not always clear. Without knowing
a workload’s performance goals, the platform may overclock
prematurely (i.e., under low load that does not impact tail
performance) and, due to the lifetime impact, lose the ability
to overclock when really needed. Combining IPC with CPU
utilization as a proxy for load can be inefficient too because
the performance of some workloads is impacted at a moderate
CPU utilization while others are unimpacted even under high
utilization. Finally, operators can even have deployment-level
goals for provisioning (number of VMs) and overclocking
based on instance-level monitoring only will be inefficient.
To illustrate these scenarios, we profile two classes of
popular cloud workloads: (1) microservices from the largest
open-source benchmark suite, DeathStarBench [32], and (2) a
proprietary web conferencing application called WebConf.

Microservices. We run eight SocialNet microservices [32]
under varying loads (low, medium, and high) in three envi-
ronments: Baseline, Overclock, and ScaleOut. Baseline and
Overclock run a single VM at turbo (3.3 GHz) and overclocked
(4.0 GHz) frequency. ScaleOut has two VMs running at turbo.
Figure 2 shows the tail latency of the microservices. The
red horizontal line indicates SLO, where the SLO for each
service is set to be 5 times its execution time on an unloaded
system [26], [60], [73]. Figure 3 shows their CPU utilization.

ScaleOut is provisioned to handle the peak load and always
operates 2 VMs that run at turbo. Although it provides the
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Fig. 2: Tail latency of SocialNet microservices with different
loads in Baseline, Overclock, and ScaleOut environments.
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Fig. 3: CPU utilization of SocialNet microservices with differ-

ent loads in Baseline, Overclock, and ScaleOut environments.
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Fig. 4: CPU utilization timeline with and without overclocking
for two WebConf VMs.

best performance, it also incurs the highest cost. In contrast,
Overclock uses a single VM and still keeps the tail latency
below the SLO in many cases, thereby avoiding the need
to scale out. However, some services (e.g., Usr) can tolerate
higher CPU utilization without violating their SLO while
others (e.g., UrlShort) violate their SLO even under a low
utilization. Therefore, a workload-agnostic policy using CPU
utilization for overclocking will make suboptimal decisions.
These observations hold for any cloud workload with similar
characteristics — bursty load with tail latency as the key metric.
For example, ML inference servers [60], [98], serverless
computing [86], and key-value stores [61] amongst others.

WebConf. The workload hosts conferences in a VM. For
fault-tolerance, operators provision VMs across availability
zones (AZ) in a region. In an AZ, provisioning keeps the
average deployment-level CPU utilization below 50% to handle
load from another failed AZ. Overclocking can save cost for
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Fig. 5: Average, median (P50), and peak (P99) power utiliza-
tion of 7,100 racks over 6 weeks in three regions.

WebConf through deployment-level decisions. Individual VMs
can have high utilization, but overclocking them is suboptimal
since the deployment-level utilization may be below the target.

To illustrate, we execute WebConf on two VMs. V M7 has
a low load while V' M>’s load is high. Figure 4 shows the VM-
and deployment-level average CPU utilization. Although over-
clocking provides a benefit, it is unnecessary since the baseline
already meets the workload performance (provisioning) goal.

Q2: Are there enough resources for overclocking? Since
overclocking increases power draw and component wear out,
we need headroom for these resources.

Power headroom. We analyze the power draw of 7.1k dedi-
cated racks that run Microsoft’s productivity and collaboration
services, including those from Figure 1, which are used by
millions of users across the world. The racks span all major
regions (e.g., United States, Europe, Asia) and each rack has
24-32 servers. The analysis period is 6 weeks (April 10" —
May 12t", 2023). Figure 5 shows the CDF of average, median
(P50), and P99 rack power utilization. Half the racks have an
average utilization lower than 66%. Importantly, 50% and 90%
of the racks have P99 lower than 73% and 89%, respectively.
We observe similar power patterns on non-dedicated racks in
Azure with a mix of first- and third-party workloads.

To estimate the power impact from overclocking, we use the
overclocking requirements of critical user-facing workloads
that constitute 45% of the deployed cores. Their requirements
vary — some require overclocking for several minutes per hour,
while others for multiple hours per weekday. Figure 6 shows
the power draw of a rack without and with overclocking for
five weekdays; the red line shows the rack power limit. Each
server in this rack hosts VMs of many distinct services and
captures a typical datacenter environment with multi-tenant
servers. The rack power draw is below the limit for the base-
line, but overclocking exceeds the limit and causes capping.
More generally, overclocking the selected workloads will not
result in capping for 85% of the time. For the remaining 15%,
naive overclocking causes 30-50% degradation in workload
performance (core frequency) due to capping. However, there
is still headroom available on these power-constrained racks,
but it is insufficient to overclock to the highest frequency; the
available headroom is 75% of the requisite at P99.

Therefore, most of the time (85%) racks have the needed
power headroom for overclocking. However, a power-aware
policy is needed for the constrained scenarios.
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Fig. 6: Example of rack power draw over 5 weekdays
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Fig. 7: CPU ageing for a VM running a workload with a
diurnal pattern under multiple overclocking policies.

These findings are with the default Azure VM scheduler that
uses a set of resource-centric placement rules [40]. Providers
can add power-aware scheduling policies to aid overclocking,
but this exploration is future work. Nonetheless, even with
optimized placement, there will still be power-constrained
scenarios where overclocking has to be performed carefully.

Component lifetime headroom. Prior work shows that ad-
vanced cooling (e.g., wax, immersion) is needed for enabling
sprinting/overclocking [30], [51], [78], [79]. However, there
is opportunity to overclock even in air-cooled server de-
ployments. Cloud server cooling is designed for operating
components at their rated thermal design power (TDP). How-
ever, servers rarely consume their TDP due to low resource
utilization in the cloud [21]. Several factors contribute to the
low utilization. First, over-provisioning and diurnal workload
patterns result in low VM utilization. Second, workload hetero-
geneity on servers results in low server utilization. Each server
hosts many small VMs (2-8 cores). For resiliency, operators
spread their VMs across servers and racks. Consequently, the
VMs on any given server belong to different workloads. This
heterogeneity results in low server utilization as the workloads
have different peak times. Consequently, components are not
thermally constrained for overclocking in air and advanced
cooling can be used to enhance the capability (e.g., duration)
as lower operating temperatures reduce ageing [51]. Finally,
since overclocking does not exceed the TDP nor the rack limit,
it will not cause additional cooling-related failures.

In fact, under-utilization enables overclocking in air. Ven-
dors assume near-100% usage for determining frequencies/-
voltage (e.g., turbo) that satisfy the lifetime goals. Under-
utilization accumulates lifetime credits that can be consumed
via overclocking. To understand the opportunity, we use a 7nm
composite processor model from TSMC. It uses a complex
relation between overclocking (voltage scaling) and CPU
utilization (time period at the specified voltage) to model the
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ageing from wear-out in the form of gate oxide failure [23],
[58]. The model predicts that a CPU ages by 2.5 years over a
5-year period for a conservative fleet usage. The remaining 2.5
years can be used for overclocking. But naively overclocking
for 50% of the time ages the CPU by 5 years in less than
a year use due to accelerated wearout. A smart system can
constrain overclocking so that the part ages according to the
reference (i.e., 1 year ageing over a 1-year period).

Figure 7 illustrates the effect of overclocking policies on
ageing. It shows the 5-day CPU utilization of a production
workload with a diurnal pattern of daily midday peaks above
50% and valleys lower than 20% at night. The expectation is
that the processor ages 5 days over the same period (“Expected
ageing”). However, the actual ageing is less than 2-days
for the “Non-overclocked” baseline. “Always overclock” ages
the CPU over 10 days, indicating that, for the same CPU
utilization, overclocking significantly increases wearout. On
the other hand, an “Overclock-aware” policy can consume the
accumulated credits by overclocking for 25% of the time and
not exceed the expected ageing. Offline modeling assumes
CPU utilization is unchanged while overclocking for worst-
case analysis. However, overclocking’s ageing impact will be
less if the utilization reduces. To address this limitation, we
are working with the CPU vendors on “wearout counters” for
online calculation of the ageing impact (see §VI).

Therefore, overclocking is enabled due to under-utilization
and can be improved with advanced cooling. A system must
carefully manage overclocking to comply with lifetime goals.

Q3: Can we predict the availability of resources? An
efficient overclocking system must perform admission control
based on available power and lifetime. We observe that a
prediction-based approach can yield high accuracy.

Power predictability. A system needs to predict how much
power can be used by overclocking without triggering capping.
Figure 6 shows the baseline power draw of a rack and gives
us insights that historical observations of power profiles can
be leveraged for prediction. The rack hosts multiple services,
where each service can have a distinct power profile. However,
due to statistical multiplexing, the combined power draw
of the rack with heterogeneous services shows a repeatable
pattern. We analyzed the power predictability of 7.1K racks
(thousands of servers) that collectively run >100 services.
Although the racks are dedicated for Microsoft’s productivity
and collaboration services, this dataset accounts the fact that

ServerC—ServerD—ServerE—ServerF

—ServerA—ServerB

Mon-9am Tue-9am Wed-9am Thu-9am Fri-9am

Fig. 9: Normalized power draw over time of six randomly
chosen servers within the same rack.

racks and servers on a public cloud host heterogeneous work-
loads. Furthermore, the dynamicity of cloud platforms (e.g.,
VM churn according to a workload’s needs) is also reflected.
Figure 8 shows the CDF of Root Mean Squared Error
(RMSE) of rack power predictions of four Azure regions.
The RMSE is low even at high percentiles indicating high
predictability. For example, in Region 3, 50% and 99% of
the racks have an RMSE lower than 1.95W and 5.11W,
respectively. The findings are similar in the other regions.
Furthermore, an analysis of 20K non-dedicated racks, running
a mix of first- and third-party workloads, in the three most
popular Azure regions yielded similar results. A major reason
for this predictability is long-lived VMs that govern resource
utilization. Prior work shows that long-lived VMs (or jobs)
account for >95% of allocated resources [21], [81], [85].

Component lifetime impact predictability. To remain within the
overclocking lifetime budget, a system needs to predict how
much overclocked CPU cycles a given workload will consume.
As a server’s power draw depends on CPU utilization, pre-
dictability in power indicates predictability in CPU utilization.
Using the aforementioned methodology for a rack’s power,
we now analyze the CPU utilization predictability. Our results
show that CPU utilization of servers are also predictable: more
than 50% and 90% of the servers have an RMSE of CPU
utilization lower than 3.13% and 7.82%, respectively.

Therefore, historical observations of power draw and CPU
utilization can be used to predict the available power and
component lifetime headroom for overclocking.

Q4: How to assign power budgets? A server’s power budget
for “safe” overclocking depends on the power draw of the
other servers in the hierarchy (e.g., a rack). Under fair share,
the rack power budget is split equally across all servers and
each server can locally ensure that its power draw stays below
the limit to avoid capping while overclocking. However, this
approach is inefficient since some servers may not be able to
overclock even while the rack is not power-constrained.
Figure 9 shows the normalized power draw over 5 weekdays
of six randomly chosen servers in a rack; each server is a dif-
ferent color. We can see that servers have very different power
profiles. Some servers may use even 30% less power than
others. In addition, servers that consume the most power in a
rack change over time. For example, at different timestamps,
ServerC, ServerD, or ServerF may be the power dominant one.
Therefore, an efficient overclocking system needs to split
the rack power budget heterogeneously across servers. His-
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Fig. 10: Overview of the SmartOClock overclocking system.

torical observations of server power demand and rack-level
headroom can be used for the heterogeneous attribution.

QS: How to efficiently use the power? The power headroom
for overclocking in a rack is consumed by all servers in
that rack. Thus, to grant or reject an overclocking request,
each server should contact a centralized entity that has the
global view of the rack’s total remaining power headroom.
Unfortunately, this approach is expensive and limits the sys-
tem’s fault-tolerance — if the centralized entity fails, then
all overclocking requests would be rejected. Making local
overclocking decisions using assigned server power budgets
improves fault tolerance. However, overclocking requests may
still be rejected due to inefficient assignments. For example,
a scheme that uses power predictions for budget assignments
can be suboptimal due to mispredictions.

Therefore, a high-performance and fault-tolerant overclock-
ing system needs to be decentralized and should allow servers
to explore beyond their potentially stale power limits.

IV. SMARTOCLOCK

Driven by the characterization insights, we propose Smar-
tOClock: a distributed overclocking management platform for
the cloud. It is readily integrated with existing platforms and
enables a wide variety of workloads to run with high perfor-
mance at lower cost. SmartOClock responds to the outlined
questions for an efficient overclocking scheme through four
novel features. First, it is workload-intelligent as it uses hints
provided by workloads to extract the most benefits from over-
clocking. Second, SmartOClock performs prediction-based
admission control of overclocking requests to avoid power
capping and premature component wearout. Third, it uses
predictions to split the rack power limit heterogeneously across
servers. Finally, SmartOClock uses a decentralized scheme for
budget enforcement while overclocking and allows controlled
exploration to revise inefficient assignments.

Architecture. Figure 10 shows the architecture of SmartO-
Clock. The system is organized hierarchically where each con-
troller manages the components on its level and communicates
with the controllers from the upper and lower levels. First,
when deploying their services, the workload owners configure
the Global Workload Intelligence Agent for their service. They
specify the conditions under which the workload needs to
be overclocked. As workloads are composed of one or more

VMs, each VM is deployed with its own Local Workload
Intelligence Agent. Like conventional auto-scaling, the local
agent collects the metrics of interest from the VM and sends
them to the global agent. Thus, this setup does not introduce
new security or privacy challenges. The global agent uses the
metrics to decide if any VM needs to be overclocked and sends
a signal to the local agent of such VMs. On receiving a signal,
a local agent sends an overclocking request to the Server
Overclocking Agent (SOA). The request can be submitted via
a local interface, such as a hypervisor-specific shared memory
implementation [68], [83], [95] or locally-terminated network
endpoint [6], [34], [67]. The sOA predicts if there are enough
resources to satisfy the request and, accordingly, grants or
rejects the request. If the request is rejected, the local agent
informs the global agent which then takes corrective actions
(e.g., request scale-out or redistribute the load towards the
overclocked VMs). In the background, each sOA monitors a
server’s power and overclocking needs, and creates a profile
to be periodically sent to the Global Overclocking Agent
(gOA). The gOA uses the profiles to assign efficient per-
server budgets. In turn, an sOA uses the assigned budget for
admission control until the budget gets updated.

A. Workload-Aware Overclocking

Overview. SmartOClock extends the existing autoscaling in-
terface with overclocking. A workload specifies the scale-up
(start) and scale-down (stop) thresholds for overclocking. The
overclocking hints can be inserted by developers after profiling
or they can be automated using the existing tools for automatic
instance scaling [11], [31], [64], [88], [99]. Like conventional
autoscaling, the overclocking thresholds can be: metrics-based
or schedule-based. Under metrics-based overclocking, work-
loads can use application metrics (e.g., tail latency, queue
length) or resource utilization (e.g., CPU, network) to trigger
overclocking. The granularity of application hints can be per-
function in the case of tail latency or per-VM in the case
of resource utilization. These metrics can then be monitored
per- and across-VM instances for specified time intervals to
meet an application’s goals. Additionally, workloads that have
predictable times for high traffic (e.g., 9-10 AM local time) can
use schedule-based thresholds. Finally, workloads can also use
a combination of metrics- and schedule-based. Importantly,
extending the autoscaling interface for overclocking enables
using scaling out (creating new VMs) as a fallback mech-
anisms for when overclocking is not possible. The scale-out
signal can also be triggered proactively by SmartOClock using
predictions for the ability to overclock (see Section IV-D).

Adopting WI by cloud users. Although workload owners
already carefully tune the metrics and thresholds for horizontal
scaling, there is overhead in repeating the process for vertical
scaling (overclocking). To ease adoption, SmartOClock can be
extended to infer the overclocking thresholds. It can leverage
workload historical data to determine scale-up values. The
lifetime impact of overclocking can be factored in this analy-
sis. For example, use P90 of historical value if overclocking



can be performed for 10% of the time only to comply with
lifetime goals. The overclocking impact needs to be estimated
to determine the scale-down value. An inaccurate estimate can
either cause dithering if it is too close to the scale-up threshold
or waste precious overclocking time if the estimate is too low.
Performance models using low-level architectural counters can
be used for the estimation. Workload owners can also leverage
the inferred thresholds as an initial estimation.

B. Overclocking Admission Control

Overview. Naively granting overclocking requests (1) in-
creases the chance of power capping events that deteriorate
performance, and (2) accelerates wear out of server compo-
nents. Instead, SmartOClock performs admission control for
the overclocking requests based on power and component
lifetime impact predictions. It predicts (1) the rack’s power
draw to assess if overclocking will result in capping, and (2)
the CPU utilization of VMs requesting overclocking to assess
if overclocking them will exceed the lifetime budget. Using the
predictions, SmartOClock decides (1) if the requested power
and overclocking budgets can be reserved for a schedule-based
workload, or (2) for how long a given VM can be overclocked
under a metrics-based policy before needing corrective actions.
Note that the power reservation is soft, the power can be
taken by workloads outside of the system that do not need
overclocking and SmartOClock needs to adjust.

Managing power. As observed in Section III, the power draw
of racks and servers is highly predictable. Hence, the gOA and
SOA continuously monitor the server and rack power draw
and use the data gathered during monitoring to periodically
(e.g., weekly) recompute the per-rack and per-server power
templates. The templates are used to predict if the additional
power of overclocking will trigger a capping event.
SmartOClock creates a power template using per-day ag-
gregation of power draws across all weekdays in the prior
week. The template represents a single day and the same
template is used for predictions for all days in the following
week. For example, the template’s value at 9AM is the median
of rack’s power draw at 9AM across all five weekdays. A
separate template is used for weekends. The intuition for
this approach is that (1) using a coarse-grained measurement
(e.g., the maximum over a week) is too conservative (i.e.,
it unnecessarily rejects many overclocking request) and (2)
using fine-grained measurements (i.e., all power measurements
from the prior week) is insufficiently robust to outliers (e.g.,
holidays during the prior week). Section V-B compares the
accuracy of several template-creation strategies.
Managing lifetime impact from overclocking. A max time
to overclock a component is obtained through an offline
analysis with the vendors (e.g., 10% over a S-year period).
This analysis uses realistic, yet conservative, utilization of
cloud components to determine the opportunity. The duration
of individual overclockings can vary, but SmartOClock needs
to honor the total overclocking time assumption to comply
with component lifetime goals. This requirement is the same
as for using turbo-boost on non-overclockable CPUs.

To get uniform overclocking over a component’s expected
lifetime, SmartOClock divides the overall budget into epochs.
The definition of an epoch is configurable (e.g., a day, week).
Using a longer epoch, such as a week, enables assigning
unused budgets from the weekend to the weekdays. Hence,
SmartOClock defines an epoch to be a week and calculates
per-weekday max overclocking time.

Each sOA ensures that the overclocked time-in-state of a
component (e.g., per-core of a CPU) does not exceed the limit.
Tracking and enforcement is per-server; an sOA uses mecha-
nisms like Intel PMT [48] for the time-in-state tracking and
denies overclocking requests if the budget is exhausted. Due
to hardware heterogeneity, vendor-specific APIs are needed
for the tracking; calling such APIs is already supported by
operating systems (e.g., Intel PMT [49] and AMD HSMP [9]
on Linux), and enforcement is via standard interfaces (e.g.,
CPPC [2] for CPU cores). For a predictable overclocking
experience, an sOA also reserves overclocking budgets for
scheduled requests. Unused budgets can be used by metrics-
based overclocking and/or carried over to the next epoch.

C. Heterogeneous Power Budgets

Overview. SmartOClock splits the rack power budget het-
erogeneously amongst servers. Each sOA collect its server’s
power draw and overclocking needs over time to create power
and overclocking femplates. The power template specifies a
server’s draw at a given timestamp. The overclock template
specifies the number of cores that requested and were granted
overclocking. The sOAs periodically (e.g., weekly) exchange
their templates with the gOA. The gOA combines power and
overclocking templates of all sOAs and computes individual
power budgets. It grants power credits to servers for periods
when VMs are overclocked, per the reported template.

Power budget computation. The power budget computation
happens in three phases. First, the gOA uses its power model
to separate the server’s power into the regular and overclock
power; the number of cores from the server’s overclocking
template enable the gOA to discriminate the two portions.
Second, the gOA assigns to each sOA the initial power budget
that is equal to the server’s regular power draw. Finally,
the gOA splits the remaining power headroom based on the
overclocking requirements, i.e., servers with more overclocked
cores in the past get larger extra power budgets for the future.

For example, a rack has two servers (X and Y) and 1.3kW
power limit. Typical power draw without overclocking of X
and Y at 9AM is 400W and 300W, respectively. Thus, the
unused power is 600W. In addition, at 9AM, X and Y typically
need to overclock 5 cores (extra 50W) and 10 cores (extra
100W), respectively. Based on this history, the gOA computes
the power budgets for 9AM: for X 400W + 20x600y

100 x 600 S0+100
600W, and for Y 300W + 504100 W =700W.

D. Decentralized Budget Enforcement

Overview. SmartOClock takes decentralized decisions by al-
lowing servers to locally process overclocking requests from



their VMs. An sOA uses the server’s power profile to predict
if overclocking will exceed the server’s power budget. As the
budget computations rely on predictions, they may become
stale. Thus, SmartOClock allows sOAs to explore beyond their
initial assignments. Similarly, an sOA tracks the overclocking
time of VMs and predicts if a VM will run out of budget. Then,
to avoid missed SLOs, the sOA informs the global WI agent
(via local) of the inability to overclock; in turn, the global WI
agent can take corrective actions using the configured scale-
out policies. Enabling local decisions is key for reactively
handling activity bursts under metrics-based overclocking.
The overclocking trigger by a WI agent is conveyed to the
(local) sOA that can start/stop overclocking in order of a
few milliseconds. Furthermore, if the assigned power budget
is insufficient (e.g., misprediction, due to change in load),
then the sOA can independently explore a higher budget to
maximize the extent (frequency) of overclocking.

Power budget enforcement. The gOA periodically sends
the heterogeneously assigned power budgets to each sOA.
Then, each sOA performs prioritized per-VM power manage-
ment [57] via a feedback loop to control the server power
draw while overclocking. For example, scheduled overclock-
ing VMs can be of higher priority compared to unscheduled
(metrics-based) ones. In the feedback loop, an sOA changes
the frequency of the overclocked VMs per priority in discrete
steps (e.g., 100 MHz). Based on the impact of the last
frequency change on the server’s power draw, the sOA either:
(1) maintains the VMs at the current frequency (if threshold <
draw < limit, where threshold = limit - buffer), (2) increases
frequency by step size (if draw < threshold), or (3) reduces
frequency by step size (if draw > limit). Prioritization enables
overclocking the more important VMs to the maximum extent
before less important VMs are overclocked.

Exploring beyond the local budgets. Due to mispredictions,
the initial power allotment may become inefficient—some
servers may consume less than predicted while others are
limited by their budget and cannot overclock VMs to the
maximum extent. Thus, SmartOClock allows sOAs to explore
beyond their allocated power budgets. Specifically, on con-
strained servers, the sOA tries to gradually exceed the limit
through two phases: exploration and exploitation.

Exploration. A sOA conditionally increases its budget by a
step size (e.g., 20W) that causes the feedback loop to start
increasing the frequency of the overclocked VMs. If within a
short timespan (e.g., 30 seconds), the SOA does not receive any
warning messages from the rack power capping system (run
in the rack manager on each rack), then it further increases
the budget. The sOA stops when all VMs are overclocked to
the highest frequency or when it receives a warning message.
The rack manager sends a warning message to all sSOAs when
the rack’s power draw reaches a warning threshold (e.g., 95%
of the rack’s power limit). An sOA ignores the message if it is
not exploring. Otherwise, it reduces its budget by the step size
and uses exponential back-off for the next exploration phase.

Exploitation. After establishing a safe power budget (i.e., no
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Fig. 11: Server Overclocking Agent in SmartOClock.

warning messages), a SOA enters the exploitation phase. In this
phase, it uses the new budget to grant overclocking requests
until either the time to exploit expires or upon receiving a
power capping event. When the time to exploit expires, the
sOA starts a new exploration phase if needed. Whereas, on a
capping event, it goes back to its initial power budget.

Similarly, a sOA can explore beyond the local per-core
overclocking budget. If a VM requires overclocking for longer
than its assigned cores can sustain, the SOA will first overclock
the VM’s assigned cores until their budget is exhausted. Then,
the sOA explores rescheduling the VM on other cores in the
server with available budget.

Managing resource exhaustion. When an overclocking re-
quest is rejected, the global WI agent takes corrective actions
per an operator-chosen policy. A simple policy is to scale out
while factoring the number of VMs that cannot be overclocked
across a deployment (e.g., create x new if y existing VMs can-
not be overclocked). Figure 11 shows the operations performed
by SmartOClock for managing power exhaustion. First, a sOA
predicts when it will run out of power for overclocking. For
this check, it first predicts the extra power from overclocking
a given VM (for a worst-case CPU utilization). Next, via the
template, it finds the time when the predicted extra power
exceeds the server’s budget. It then sends a signal to the global
WI agent if the time to exhaustion is within a configurable
window (e.g., 15 minutes). To minimize performance impact
from a lack of overclocking, the length of the window should
be greater than the time to scale out, so that overclocking
is still available for the time it takes to scale out. Finally,
this operation can be performed ahead of time for scheduled
overclocking requests to protect workload SLOs. For metrics-
based overclocking, the scale-up (overclocking) threshold can
be set before scale-out, where SLOs would be missed if
resources are inadequately provisioned after the scale-out
threshold is exceeded. Setting an earlier scale-up threshold
allows using overclocking to handle load spikes and enables
reverting to scale-out if overclocking is not possible. Like
power, an sOA also predicts the time to exhaustion of the
overclocking budget and informs the global WI agent.

V. EVALUATION

To evaluate SmartOClock, we perform real-system experi-
ments running cloud applications in an overclockable server
cluster, and large-scale analysis using production traces.



A. Cluster-Level Experiments

Methodology. We implement SmartOClock and conduct the
experiments on 36 overclockable servers (all 28 from one rack,
and 8 from another during scale-out). Each server has a 64-
core (128 threads) AMD EPYC 7763 CPU with customiza-
tions to facilitate overclocking experimentation. Its default
max turbo frequency is 3.3GHz, which can be increased to
4.0 GHz on these custom parts for overclocking. The CPU is
configured to operate in performance mode [82] and the active
cores can steadily run at 4.0 GHz while TDP-unconstrained.

To set the load for each server, we take an example
production rack from Azure. Based on the power traces of
these production servers, we select which application to run
in each individual server to mimic the same power profile.
We run VMs hosting two open-source applications: (1) the
latency-critical social network microservices (SocialNet) from
DeathStarBench [32] and, (2) the throughput-optimized ma-
chine learning training (MLTrain) from FunctionBench [54]. In
the power traces, 14 of the servers show constant high power
while the other 14 show a diurnal pattern. For the first 14
servers, we use MLTrain and SocialNet for the other 14. The
load for each benchmark instance is configured to mimic the
power draw of the corresponding production server.

We define the per-server load in our experiments based on
the production traces. As the profiled servers run different,
independent, workloads, each server runs an independent set
of SocialNet instances. Thus, there is no correlation in the
power draw or loads across servers (i.e., the load on one server
does not affect the load on others). Auto-scaling is set for
SocialNet based on its tail latency (initial count is 14). As in
Section III, we set the SLO of each microservice to be 5 times
its execution time on an unloaded system [26], [60], [73].

We compare SmartOClock with a Baseline system that does
not scale horizontally (number of instances) nor vertically
(core’s frequency), and ScaleOut and ScaleUp systems that
only scale out/in and up/down, respectively, the number of
SocialNet instances based on the observed tail. In the evalua-
tion we use a metric-based overclocking policy, which is less
predictable; experiments with a schedule-based policy show
better results due to higher predictability.

Application performance. Figure 12 shows the P99 tail and
average latency of SocialNet microservices in four environ-
ments. We group the 14 instances into three classes based on
their load: Low, Medium, and High Load. Bars in the figure
are the average across all instances with the same load level.

All systems perform equally well under low load. The
impact on tail latency becomes prominent with increased load.
Under high load, SmartOClock reduces the tail latency of
Baseline, ScaleOut, and ScaleUp by 19.0%, 10.5%, and 8.9%.

The average latency of SmartOClock is lower than Baseline
and ScaleUp, but slightly higher than ScaleOut. The reason
is that, to reduce the application’s cost and prevent scaling
out, SmartOClock operates for a longer time with higher
latencies that are still below the SLO. However, SmartOClock
significantly reduces the number of missed SLOs. The total
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number of missed SLOs at high load is reduced by 26x,
4.8x, and 2.3x over Baseline, ScaleOut, and ScaleUp, re-
spectively. These results show that overclocking (via ScaleUp
or SmartOClock) reduces missed SLOs compared to ScaleOut.
However, overclocking alone is insufficient at higher loads as
evidenced by the greater missed SLOs with ScaleUp, despite
it overclocking for 5x longer. A combination of ScaleUp and
ScaleOut via SmartOClock provides the best performance.
Finally, SmartOClock reacts fast to sudden workload shifts
and keeps the application performance within its SLO: even
on servers that triggered overclocking for more than 140 times
within 5 minutes, SmartOClock did not miss any deadlines.

Cost. Performance improvements from SmartOClock result in
cost savings for the users as they need to pay for fewer VMs.
Figure 13 shows the average number of concurrently active
VM instances for each environment over the entire run. Under
high load, SmartOClock saves substantial cost by reducing the
number of required instances by 30.4% over ScaleOut.

Energy consumption. Figure 14 shows normalized (1) per-
single-server energy consumption under low, medium, and
high load, and (2) total energy consumption of the system.
Note that ScaleOut and SmartOClock are the only systems that
meet SLOs. As the load increases, SmartOClock frequently
overclocks cores, which increases the per-server energy con-
sumption. However, as it uses fewer instances, the total energy
consumption is reduced by 10% on average over ScaleOut. The
savings are larger if we only consider servers running latency-
critical microservices — 23% on average over ScaleOut.

Power-constrained environments. We evaluate SmartO-
Clock’s overclocking admission control and heterogeneous
power budgeting under constraints. We reduce the rack’s limit
and measure the performance in two systems: NaiveOClock
and SmartOClock. NaiveOClock grants all overclocking re-
quests and on a power capping event splits the rack’s budget
equally among the servers. SmartOClock reduces the Social-
Net tail latency by 6.7% and 8.4% for medium and high loads,
respectively, and improves the MLTrain throughput by 10.4%.

Overclocking-constrained environments. To evaluate Smar-
tOClock’s proactive scale-out, we restrict the overclocking
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budget and measure the number of missed SLOs with and
without proactive scaling. As we reduce the budget to 75%,
50%, and 25% of its initial value, reactive scale-out misses the
SLO for 5.0%, 6.1%, and 7.2% of time, while SmartOClock’s
proactive approach eliminates all SLO violations.

B. Large-Scale Simulations

Methodology. We use production traces of dedicated racks
running Microsoft’s productivity and collaboration services
(see Section III) from multiple datacenters. Each datacenter
deployment is composed of hundreds of racks and a few thou-
sand servers with either Intel or AMD CPUs. Each workload’s
VMs are spread across servers and racks. The traces include
rack and server power, and VM-level CPU utilization. All data
is collected for 6 weeks (April 10** - May 12", 2023), at a
5-minute granularity. Overclocking requirements (e.g., time of
day) are obtained from the workload operators.

We develop a discrete event simulator to evaluate Smar-
tOClock. Models are used to estimate the power impact of
overclocking; CPU utilization and core frequency are the
input. We validate the model for each server generation.

We compare SmartOClock to (1) Central — an oracle with
a global view of power draw that can precisely decide if an
overclocking request will result in capping, (2) NaiveOClock —
a system that grants all overclocking requests, (3) NoFeedback
— a system that adheres to the per-server power budgets with
no exploration beyond, and (4) NoWarning — a system that
allows exploring but with no warnings. The servers go back
to their initial power budget on a capping event.

Overclocking success and power capping. Table I shows
the results: (1) number of power capping events in each
system normalized to Central, (2) percentage of successful
overclocking requests, (3) performance penalty of capping on
non-overclocked VMs, and (4) normalized performance over
Baseline. We define the performance penalty and improvement
as reduction and increase in VM frequency compared to the
Baseline (max turbo), respectively. Clusters are split into three
groups based on power draw: High, Medium, and Low-Power.

First, naively granting overclocking requests causes many
power capping events. NaiveOClock causes 118.6x, 36.6x%,
and 14.0x more events than Central in High, Medium, and
Low-Power clusters, respectively. In contrast, SmartOClock
lowers the events by 18.9x in High-Power clusters via pre-
diction for admission control. Adding the warning messages
efficiently controls overclocking beyond a server’s budget: it
reduces the number of events over NoWarning by up to 4.3 .

Second, SmartOClock successfully grants majority of over-
clocking requests. It is within 4%, 3%, and 1% of the success
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TABLE I: Comparison of SmartOClock to different baselines.

System Norm. # of | Successful Penalty on | Norm. Per-
Power Caps OClock Reqs | Power Cap | formance
[ High-Power Clusters ]
Central 1.0 92% 21% 1.186
NaiveOClock | 118.6 55% 34% 0.963
NoFeedback 5.5 72% 22% 1.122
NoWarning 274 81% 23% 1.081
SmartOClock | 6.3 89% 22% 1.164
[ Medium-Power Clusters
Central 1.0 96% 11% 1.195
NaiveOClock | 36.6 79% 19% 1.022
NoFeedback 34 83% 11% 1.163
NoWarning 72 87% 12% 1.160
SmartOClock | 3.9 93% 11% 1.185
[ Low-Power Clusters
Central 1.0 99% 1% 1.208
NaiveOClock | 14.0 99% 5% 1.172
NoFeedback 1.0 98% 1% 1.205
NoWarning 1.1 99% 2% 1.205
SmartOClock | 1.0 99% 1% 1.208
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Fig. 15: CDF of mean power prediction for each technique.

rate of an oracle Central system in High, Medium, and Low-
Power clusters, respectively. The feedback-loop for exploring
beyond the per-server budget is important: SmartOClock has
up to 1.24x higher success rate than NoFeedback approach.
Finally, heterogeneous power distribution by SmartOClock
reduces the performance penalty from power capping events.
All systems bar NaiveOClock employ this optimization. The
heterogeneous power budgets reduce the performance penalty
due to power capping events over NaiveOClock by 1.62x and
1.72x in High and Medium-Power clusters, respectively.

Power predictions accuracy. Figure 15 shows the CDF
of prediction accuracy for computing the power templates.
FlatMed and FlatMax use a constant prediction: a median or
maximum of all prior measurements. FlatMed is opportunistic
and underpredicts power, leading to high P99 prediction errors.
Whereas, FlatMax is conservative and overpredicts power,
resulting in negative prediction errors at low percentiles.
Weekly uses a time series of power measurements from the
previous week for predictions in the following week. It is
impacted by outliers since it treats each day separately: a few
hours may behave differently due to the unexpected events.
Thus, at high percentiles, its prediction error can be significant.
Finally, DailyMed and DailyMax, aggregate the power mea-
surements across a week to represent a single, typical, day.
The templates are time series of median or maximum values.
DailyMed, used in SmartOClock, has the highest accuracy.

C. Experiments with Production Services

We evaluate overclocking Service B and C under production
load. Each service consumes hundreds of virtual cores across
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Fig. 17: Impact of overclocking Service C.

tens of VMs. The deployment resource usage is similar to
Figure 1 and the SLOs are consistent with each service’s goals.
Figure 16 shows the average CPU utilization of Service
B’s VMs for different request rates (bucketized by 0.1 due
to live load variability). Overclocking reduces CPU utilization
of VMs by 23% at a peak of 1.8k requests per second (RPS);
the baseline operates at turbo (3.3 GHz). Alternatively, for
the same CPU utilization, baseline can service 1.4k RPS
vs 1.8k (28% higher) with overclocking. Figure 17 shows
that overclocking reduces Service C’s 5-minute peaks over a
weekday by 16%. The deployment load is similar on both
days. Both results show the opportunity to down-provision
while meeting the performance SLOs. Finally, overclocking
enables servicing 25% additional load by Service A VMs under
synthetic traffic; production experiments are being setup.

VI. LESSONS FROM PRODUCTION DEPLOYMENT

We built a first-of-its-kind 2-rack (56 servers) overclockable
cluster at a cloud provider for CPU overclocking in production.
Our deployment does not yet include cluster-wide coordina-
tion. Here we present lessons from the deployment.

Motivation for building a cluster. Although CPU overclock-
ing can provide substantial performance and cost benefits,
a comprehensive analysis (e.g., TCO reduction, revenue in-
crease) is needed for introducing hardware features at scale.
Projecting improvements is challenging due to workload-
specific variations, as previous work shows [51]. Furthermore,
evaluating in a lab environment is not possible for even
Microsoft’s internal workloads due to software dependencies
(e.g., deployment framework) and security concerns that pre-
vent experimentation with production traffic. Thus, building
an overclockable cluster was imperative.

Using experimental hardware in production datacenters.
Azure has a rigid process for ensuring stability (e.g., ther-
mal limitations), reliability (e.g., firmware errors), and high
performance for hardware deployment at scale that adds
overhead for limited-scale experimentation. To address, we
retrofitted overclocking onto existing hardware by installing
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overclockable CPUs and firmware updates (e.g., BIOS) on
already-deployed servers in a production datacenter. We also
bypassed software checks that remove servers with unexpected
configuration. A drawback of our approach is that the platform
(e.g., motherboard, cooling) is not optimized for overclocking,
leading to thermal and max current throttling under heavy
loads that affect performance. Additionally, we provisioned
adequate power for the racks to avoid capping; the limits are
lowered for power management evaluations.

Experiments with first-party workloads. Since the cluster
contains experimental hardware, we enforce strict admission
control. However, this policy led to atypical workload place-
ments that impact overclocking. Typically servers house VMs
from various workloads due to dynamic cloud environments
and scheduler efforts to optimize resource utilization [40],
[90], but our policy caused VMs from the same workload
to occupy entire servers. Although this impacts overclocking
efficiency, it is useful for conservative benefit estimation.

Finer-grained overclocking. SmartOClock can overclock in-
dividual VMs but first-party operators want finer-grained over-
clocking (e.g., containers in VMs). Although overclocking
VMs still works, it is inefficient because of the higher power
and reliability impact. Since containers are scheduled inside a
guest VM without host visibility, we need guest participation
for finer-grained overclocking. However, unsupervised control
of frequency by guests can compromise reliability and power
management. We are exploring a safe and efficient solution.

Hardware support for overclocking. Overclocking lifetime
budgets can be improved with wear-out counters that indicate
how a component’s (e.g., CPU core) lifetime is impacted by
utilization (voltage) and operating temperatures. SmartOClock
can use wearout counters to upgrade from a conservative
offline model to a per-part online calculation for safety.
Furthermore, the prioritized feedback loop for managing
power while overclocking can be offloaded to the hardware
for efficiency. We are extending the ACPI [2] CPPC interface
to configure VM priority while scheduling (no affinitization)
on CPU cores.The firmware can use these priorities to assign
per-core performance (frequency) while managing power.

Vendor engagements to enable overclocking. As overclock-
ing is enabled by under-utilization (Section III), instead of
overclocking, vendors (e.g., Intel, AMD) inquire about design-
ing a CPU with revised time-in-state assumptions for offline
certification. However, this is still inefficient as it does not
leverage the utilization variability from workload demands
(with and without overclocking) and temperature fluctuations
on ageing at cloud scale. Using wear-out counters to track the
usage impact on ageing does not have these limitations.
Furthermore, we are working with the vendors to ensure all
cores can hit a minimum-desired overclocking frequency (e.g.,
15-20% beyond max turbo). Some cores can run faster, but this
variability is not exposed on server CPUs (even for turbo); we
are exploring bringing mechanisms from client CPUs (e.g.,
ACPI CPPC preferred cores [2]) to leverage this variability.



Overclocking beyond CPUs. SmartOClock is a general
framework and its principles can be easily applied for over-
clocking any server component. Our initial focus was CPU
since it provides the highest benefits, but we have started
exploring overclocking of other components (e.g., GPU).

Silent data corruption (SDC). Prior work shows the risks
from SDC at scale [28], [41], [92]. Although overclocking
can aggravate error rates due to aggressive circuit timing and
sudden voltage drops, our extensive lab and production ex-
periments do not show an increase in errors, with frequencies
~20% beyond max turbo; this is inline with a prior work [51].
Nonetheless, for safety, we work with the vendors to define
a max overclocking frequency. Furthermore, techniques from
the SDC work can also be used for added safeguarding.

VII. RELATED WORK

Computational sprinting. Extensive research [15], [16], [18],
[30], [55], [63], [74], [78], [79], [100], [101] has explored
computational sprinting (i.e., boosting CPU frequency for
short periods). Mechanisms like game theory [30], formal
control [77], and performance modeling [74] have been pro-
posed to manage sprinting. Researchers have also investigated
efficiency factors like resource interference [63], power avail-
ability [16], processor design [38], and cooling [51]. However,
none of these works holistically address the overclocking
challenges in the cloud. They either focus on a single-server
setup, assume a transparent-box knowledge of the applications,
or overlook multi-tenancy on a server or rack.

The closest related work is Computational Sprinting Game
(CSG) [30]. There are two major differences between CSG and
SmartOClock. First, CSG leverages turbo and is constrained
by thermal/power limits. In contrast, overclocking also affects
reliability whose time scales are orders of magnitude (month-
s/years) more than for power/thermal (minutes). It is nontrivial
to add reliability under CSG when evaluating sprint utility. In
contrast, SmartOClockuses epochs to divide the overclocking
budget across coarse-grain time scales (days) that local agents
enforce. Second, a lack of sprinting/overclocking (of even a
few VMs) can impact the SLOs of workloads that under-
provision while relying on sprinting to handle their peaks.
Therefore, a mitigation mechanism to protect performance is
needed when sprinting is unavailable, a problem not addressed
by CSG. Section V presents the impact of proactive scaleout
by SmartOClock to protect workload SLOs.

Undervolting. Prior work has proposed decreasing the voltage
for a frequency below its safe marginal value for reducing
power [12], [13], [17], [29], [52], [75]. However, undervolting
can introduce instability and pipeline (i.e., timing) errors,
thereby necessitating hardware designers to add mechanisms
for fault tolerance. For example, Razor [29] uses additional
latches that run on a delayed clock in vulnerable paths to detec-
t/recover from errors. This body of work is complementary and
can create additional power and component lifetime headroom
(reduced wearout from lower voltage) for overclocking.
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Datacenter power management. Prior work has proposed
oversubscription through leveraging statistical properties of
concurrent power usage across servers [14], [37], [42], [56],
[57], [59], [80], [84], [94] to improve datacenter power
utilization and save costs. These works are complementary
and influence our non-overclocked baseline. Azure leverages
policies based on these prior works to oversubscribe power.
The policies factor the power demand from turbo for meeting
the performance SLAs [7], [36], [72] and prioritized throt-
tling [57], [59] is used to protect (turbo) performance of
critical workloads under rare power capping events.

Naively adding overclocking to the baseline power utiliza-
tion increases the probability of power capping events. Increas-
ing provisioned power cannot be used to address this problem
due to the TCO impact, especially when turbo is sufficient
to meet a provider’s performance SLAs. Consequently, an
overclocking system can only leverage unutilized power while
meeting workload SLOs when overclocking is not possible;
problems not addressed by the prior power management work.

Workload intelligence. Research has leveraged workload
awareness to optimize performance, energy consumption,
and cost [19]-[21], [44], [53], [87], [99], [102]. Sinan [99]
uses ML models to allocate resources per microservice tier
for minimizing cost while maintaining latency targets. Re-
Tail [19], Rubik [53], Adrenaline [43], and Gemini [102] use
application-specific features to predict optimal per-request fre-
quencies, reducing power draw while meeting SLOs. Resource
Central [21] gathers VM telemetry, learns VM behaviors
offline, and provides online predictions for various resource
managers. We propose a clean interface for cloud workloads
to provide the necessary signals for overclocking without
compromising their opaque-box implementations.

VIII. CONCLUSION

In this paper, we proposed SmartOClock, the first distributed
overclocking management platform for cloud environments.
SmartOClock enables cloud providers to offer overclocking to
workloads through four novel features: workload intelligence,
prediction-based admission control, heterogeneous power bud-
geting, and decentralized enforcement. Our evaluation shows
that SmartOClock reduces the tail latency by 8.9% and the
application cost by 30.4%. We also discussed lessons from
building an overclockable cluster in Azure. We conclude that
carefully-managed overclocking has enormous potential to
improve workload performance while saving cost.
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