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Abstract—With serverless computing, users develop scalable
applications using lightweight functions as building blocks, while
cloud providers own most of the computing stack, allowing for
better resource optimizations. In this paper, we observe that mod-
ern server-class processors are inefficiently utilized in serverless
environments. Cores perform frequent context switches within
function invocations and have a high degree of oversubscription.
In such an environment, functions frequently lose their micro-
architectural state in stateful hardware structures like caches,
TLBs, and branch predictors, causing performance degradation.
At the same time, modern processors are dimensioned for the
needs of a broad set of applications, rendering them suboptimal
for serverless workloads.

Based on these insights, we propose Mosaic, an architecture op-
timized for serverless environments that maintains generality to
efficiently support other workloads. Mosaic has two components:
(1) MosaicCPU, a processor architecture that efficiently runs both
serverless workloads and traditional monolithic applications, and
(2) MosaicScheduler, a software stack for serverless systems that
maximizes the benefits of MosaicCPU. MosaicCPU slices micro-
architectural structures into small chunks and assigns tiles of
such chunks to functions. The processor retains the state of
functions in their tiles across context switches, thereby improving
performance. Furthermore, currently-inactive tiles are set to
a low power mode, thereby reducing energy consumption. In
addition, MosaicScheduler maximizes efficiency by introducing
predictive right-sizing of the per-function tiles, alongside with
smart scheduling based on the state of the tiles. Overall, com-
pared to conventional server-class processors, Mosaic improves
the throughput of serverless workloads by 225% while using 22%
less power.

Index Terms—Cloud computing, Serverless computing, Hard-
ware partitioning

I. INTRODUCTION

Serverless computing is an emerging cloud paradigm that
provides benefits to both users and providers. The basic
execution unit is a lightweight function whose execution
environment (e.g., a container or virtual machine) is created on
demand in an event-driven manner. Users develop applications
using functions as building blocks while being charged in a
fine-granularity manner, while cloud providers provision all
resources and system services needed to run the functions.
Hence, providers have the opportunity to co-locate many short-
lived function containers on the same server and discard them
once completed. Importantly, these lightweight functions share
the infrastructure with various other workloads, including
long-running monolithic applications. As a result, providers
can maximize resource utilization by efficiently allocating
resources across diverse workloads [89]. Today, serverless

services are offered by major cloud providers [3], [26], [27],
[49] and are widely used in various domains [5], [23], [41],
[59], [82], [86].

Serverless workloads are a significant departure from work-
loads in conventional cloud environments. A typical function
is short-running [33], [69] and its execution environment is
short-lived [3], [69]. These properties introduce a range of
challenges that undermine the efficiency of existing software
and hardware. Prior work has addressed various software
inefficiencies [12], [18], [24], [32], [37], [39], [43], [47], [58],
[62], [69], [72], [74], [75], [78], [80]. Hardware inefficiencies
have also received attention [63], [64], [68], albeit to a more
limited degree.

In this work, we observe that serverless workloads use
modern processors inefficiently for at least two reasons. First,
large stateful hardware structures (caches, TLBs, and branch
predictors) are poorly exploited, bringing marginal perfor-
mance benefits while consuming substantial power. Indeed,
frequent context switches in oversubscribed serverless environ-
ments [63], [64], [68], [74] cause functions to often interleave
their executions on the cores, preventing the state in these
micro-architectural structures from being reused.

Second, server-class processors [31] are designed to support
a wide-range of compute and memory intensive workloads
(e.g., graph, database, and AI [30] applications). As a result,
they are composed of relatively fewer, more powerful cores
than would be ideal for serverless environments with many
small functions. In serverless environments, it would be best to
use servers with many smaller cores—which we call manycore
servers. In this case, the state of many different functions
can be concurrently stored in the structures of these many
cores. However, having different types of servers for traditional
monolithic workloads and serverless workloads would increase
the cost for cloud providers.

In this paper, our goal is to enhance the performance of
serverless workloads without introducing major changes to
general-purpose server-class processors. To understand what
processor architecture changes would benefit serverless en-
vironments, we characterize serverless functions on conven-
tional processors. Using a production workload from Microsoft
Azure, one of the largest serverless providers, we find that exe-
cuting functions with a cold micro-architectural state increases
their response time by 4×. In addition, typical functions are
short-running, have small data and instruction footprints, and
execute a small number of branch instructions.



Based on these insights, we propose Mosaic, an architec-
ture optimized for serverless environments. Mosaic has two
components: (1) MosaicCPU, a processor architecture that
efficiently runs both serverless and traditional workloads, and
(2) MosaicScheduler, a software stack for serverless systems
that maximizes the benefits of MosaicCPU. With Mosaic,
serverless workloads efficiently share the same servers with
traditional cloud workloads.

Mosaic is based on four main principles. First, MosaicCPU
slices oversized hardware structures into chunks and assigns
collections of chunks called tiles to individual functions.
Second, MosaicCPU assigns resources to each function based
on the needs of the function. Third, MosaicScheduler uses
a performance model to predict a nearly-optimal assignment
of tiles to functions after profiling a few invocations of
the functions. Finally, MosaicCPU and MosaicScheduler are
tightly coupled: the hardware exposes its current state to the
software, which uses it for off-line performance modeling and
on-line micro-architectural state-aware scheduling.

We prototype MosaicScheduler on an Intel Sapphire Rapids
system [31]. Our evaluation with production-level function
invocation traces shows that MosaicScheduler reduces the
functions’ tail latency by 28.3%. We evaluate the combination
of MosaicCPU and MosaicScheduler using full-system simu-
lations. On average, and compared to server-class processors,
Mosaic reduces the functions’ tail latency by 74.6%, improves
their throughput by 225%, and uses 22% less power, while
adding only 0.05% area overhead. Compared to an iso-area
manycore, Mosaic reduces the functions’ throughput by only
13%, without slowing down monolithic applications; however,
the manycore processor reduces the throughput of monolithic
applications by 68%. Thus, Mosaic efficiently runs various
co-located workloads, reducing the cost for cloud providers.

This paper makes the following contributions:
• A characterization of the sensitivity of serverless functions

to the sizes of the micro-architectural structures of general-
purpose server-class processors.

• MosaicCPU, a general-purpose processor architecture that
is highly optimized for serverless environments.

• MosaicScheduler, a software stack readily deployable on
existing hardware that optimizes the execution of serverless
workloads on MosaicCPU.

• An evaluation of Mosaic.

II. CHARACTERIZING SERVERLESS WORKLOADS ON
CURRENT SERVER-CLASS PROCESSORS

To understand the micro-architectural inefficiencies of host-
ing serverless workloads, we characterize the execution of
common serverless functions on conventional processors. We
run experiments on an Intel Sapphire Rapids [31] server at
3.6GHz with a 2MB 16-way per-core L2 cache and a 1.875MB
15-way per-core last level cache (LLC) slice (more details in
Table II). We use open-source functions [16], [36], [76], [87]
and production-grade functions from Microsoft Azure. The
evaluated functions are from different domains: image pro-
cessing (ImgProc and Thumbn), video processing (VidProc),

machine learning inference (CnnSrv, RnnSrv, LrSrv, grouped
as MLSrv), data analytics (EvStr and RiskQ), document pro-
cessing (WordCnt) and web services (HotelB, SocNet and Web-
Srv). These functions cover popular serverless use cases [11],
[19], [66]. Next, we describe our main observations.
1. What is the impact of micro-architectural state on the
performance of functions? Prior work observed that server-
less functions often execute on polluted micro-architectural
state due to frequent context switches [32], [74] and core
oversubscription [1], [21], [34]. We quantify the impact of
micro-architectural state loss by measuring the execution time
of functions while varying the number of functions interleaved.
Figure 1 shows the execution time of a function when, between
two of its invocations, there are 2, 4, 8, or 16 different
functions executed, normalized to the execution time of the
function’s isolated execution. To compare with a complete
loss of state, we also run the ClearAll environment, which
flushes all cache, TLB, and branch predictor state on context
switch. The figure shows a few representative functions and
the average of all our functions.
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Fig. 1: Function execution time while varying the number of
functions interleaved, normalized to isolated execution.

We see that all functions degrade performance when exe-
cuting on a core with polluted micro-architectural state. As
the number of interleaved functions increases, the execution
time gradually increases. For functions that have significant
state reuse across invocations (e.g., MLSrv), or that frequently
context switch within an invocation (e.g., SocNet), completely
losing the state increases the execution time by more than 3×.
On average, ClearAll increases the execution time by 2.9×.

We also measure function interleaving on a core in a real-
world deployment at Microsoft Azure. Given a function f , we
observe that there are at least 8 and 16 other functions inter-
leaved on a core, for 21% and 9% of consecutive invocations
of f , respectively. Note that f is not evicted from memory,
but it executes with polluted micro-architectural state. Thus,
preserving the micro-architectural state of functions is of great
importance in real-world serverless deployments.
2. How to preserve the micro-architectural state of func-
tions? Servers are optimized for long-running applications
with large data and instruction footprints. The size of stateful
structures such as caches increases with every new processor
generation. However, many serverless functions have substan-
tially different needs. In this section, we contrast serverless
functions with traditional monolithic cloud applications [52].

First, we measure the applications’ LLC occupancy via
Intel’s pqos tool [29]. The right part of Figure 3 shows the
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Fig. 2: Normalized execution time of the ImgProc serverless function with different sizes of L2 and LLC slice. The number
on top of the leftmost bar is the execution time with full L2 and LLC slice sizes.

LLC occupancy of different serverless functions. Most of the
functions use around 2MB. The average LLC occupancy of
all our 10 functions is 2.9MB. On the other hand, the left
part of Figure 3 shows the LLC occupancy of monolithic
applications. We see that all applications use the maximum
size of the LLC, which is 15MBs for our 8-slice experiments.
Compared to serverless functions, monolithic applications are
longer-running (a few minutes vs. a few milliseconds), have
significantly larger memory footprints (10s of GBs vs. 10s-
100s of MBs), and occupy the whole LLC and could benefit
from even larger caching space (15MB vs. 2.9MB).
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Fig. 3: Last Level Cache (LLC) occupancy for long-running
monolithic applications and serverless functions.

The small LLC occupancy of serverless functions indicates
that they can execute with a reduced cache capacity and still
perform well. Hence, we use Intel’s CAT [28] to execute
functions and monolithic applications with different numbers
of LLC ways per slice: 15, 10, 5 or 2 LLC ways per slice.
Figure 4 shows the resulting execution time of monolithic ap-
plications (left) and functions (right). The bars are normalized
to 15 ways per slice, which is the default design. We see
that monolithic applications experience a severe increase in
execution time if they run on smaller caches. For example,
DataSrv increases its execution time by 50% when using 2
LLC ways rather than the default 15 ways. In contrast, the
right part of Figure 4 shows that all functions barely change
their execution time even when running with only 2 LLC ways.
On average, using 2 instead of 15 ways per LLC slice increases
the functions’ execution time by only 2.8%.

We now reduce the size of both the L2 cache and the LLC.
Figure 2 shows the execution time of a representative function,
ImgProc, with different numbers of ways in the L2 and in the
LLC slice. The groups of bars correspond to different LLC
slice sizes and, within a group, there are bars for different
L2 sizes. All bars are normalized to the case of full L2 and
LLC slice size. From the figure, we see that even with a
modest number of ways in the L2 and in the LLC slice,
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Fig. 4: Normalized execution time of monolithic applications
and serverless functions with different LLC slice sizes.

the execution time of the function does not increase much.
Therefore, serverless functions can still run efficiently with
relatively small L2 and LLC caches.

Finally, we collect instruction traces with Pin [45] and
simulate different sizes of branch predictors with the SST
simulator described in Section IV. Our baseline architecture
of Section IV has a 32KB TAGE-SC-L [67] branch predictor
and an 8K-entry branch target buffer. Figure 5 shows the
hit rate of the branch predictor and branch target buffer
as we reduce the size of these structures for the ImgProc
function. We consider structures with a fraction of the entries
in the baseline structures and normalize the hit rates to that
of baseline structures. We can see that 32× smaller branch
predictor table and BTB reduce the hit rates by only 0.9%
and 3.9%, respectively.
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Fig. 5: Normalized hit rate of the branch predictor table and
branch target buffer as we reduce the number of entries in the
structures for the ImgProc serverless function.

In Mosaic, we exploit the small footprints of functions
to partition structures and preserve the functions’ state in
their partition. Mosaic overcomes the inefficiencies of existing
partitioning schemes (e.g., Intel CAT [28]). Such schemes
partition only some levels of the cache hierarchy, rather than
additionally partitioning stateful structures (e.g., branch target
buffer). Moreover, they induce non-negligible ms-scale over-
heads when they change the core’s allocation policy. Finally,
they support only a small number of classes of service, limiting
the number of concurrently stored states on the server.



3. Why maintain processor generality? Instead of creating
a specialized core/accelerator for serverless workloads [71],
Mosaic aims to maintain processor generality and introduce
modest changes that allow a general-purpose server-class CPU
to efficiently run both traditional and serverless workloads.
There are three reasons for this decision: (1) handling inter-
function heterogeneity, (2) reducing the provider’s TCO, and
(3) accommodating end-to-end cloud workflows.

First, although many functions execute acceptably in low-
performance cores (i.e., cores with small hardware structures,
low frequency, and low issue width), some functions benefit
from executing in high-performance server-class cores. We
simulate the execution of our functions on a beefy core
modeled after Intel’s Sapphire Rapids [31] at 3.6GHz and
on a small core modeled after ARM’s A15 [7] at 2.5GHz.
It can be shown that while WebSrv and SocNet see minimal
performance degradation, MLSrv and ImgProc increase the re-
sponse time by more than 47%. Some heterogeneous platforms
such as ARM’s big.LITTLE [8] include both high-performance
beefy cores and energy-efficient small cores. However, they
have a fixed number of each core type and cannot dynamically
adapt to the workload.

Second, serverless workloads are only a fraction of the
workloads in the cloud, and often share the same server
with monolithic applications that require large cores [89].
Creating a separate cluster dedicated to serverless workloads
substantially increases the TCO for providers due to the
introduced fragmentation (as shown in Figure 22).

Finally, end-to-end serverless applications are often com-
posed of both serverless functions and monolithic services. As
an example, many serverless functions [25] use databases such
as MongoDB [50] as their backends. For high performance,
these different pieces of an application should run close to
each other—ideally, on the same physical server.
4. What is the heterogeneity across functions? Different
functions can have very different hardware requirements. As
an example, Figure 6 shows the execution time of three
functions, RnnSrv, ImgProc and WordCnt, when executing
with different numbers of L2 ways. The execution time is
normalized to the one with all 16 ways. We see that RnnSrv is
highly sensitive to L2 size, and needs at least eight L2 ways,
while ImgProc is modestly sensitive to L2 size and needs at
least two L2 ways, and WordCnt is insensitive to L2 size.

RnnSrv ImgProc WordCnt0.0
0.5
1.0
1.5
2.0
2.5
3.0

No
rm

. E
xe

c.
 T

im
e

4.4ms 12.2ms 1.1ms

L2 size [MB]: 2.00
1.88

1.75
1.63

1.50
1.38

1.25
1.13

1.00
0.88

0.75
0.63

0.50
0.38

0.25
0.13

Fig. 6: Normalized execution time of functions executing on
a core with a single LLC way per slice and different L2 sizes.
The numbers on top of the bars are the execution times with
a full L2 size.

To generalize a function’s needs, we categorize functions

into Low, Medium, and High intensity for data, instruction, and
branches. These categories are determined by the function’s
data working set size, instruction working set size, and branch
working set size (i.e., the working set size of the cache
lines that contain branches), respectively. Table I shows the
categorization of some of the functions we use. Functions
that fall in the same bucket typically need the same hardware
structure size for optimal cost-performance.

TABLE I: Categorization of functions into low, medium, and
high intensity for data, instructions, and branches.

Function Data Instructions Branches

RiskQ Low Low Low
EvStr Low Low Medium
WordCnt Low Low Medium
ImgProc Medium High High
MLSrv High Medium High
HotelB Low Low Low
SocNet Low Low Low
WebSrv Medium Low Low

We use this categorization to classify a subset of popular
production-level functions at Microsoft Azure. The majority
of the evaluated functions have Low data intensity with an
average data working set size of 2MB, Medium instruction
intensity with an average instruction working set size of
12MB, and Medium branch intensity with an average branch
working set size of 1.5MB. For comparison, monolithic ap-
plications [52] have 8GB, 0.7GB, and 0.3GB average data,
instruction, and branch working set sizes, respectively.

III. MOSAIC: SERVER ARCHITECTURE CO-DESIGN FOR
SERVERLESS FUNCTIONS

To address the observed inefficiencies, we introduce Mosaic,
a system optimized for serverless environments. Mosaic has
two components: (1) MosaicCPU, a processor architecture that
efficiently runs both monolithic applications and serverless
functions, and (2) MosaicScheduler, a software stack for
serverless systems that maximizes the benefits of MosaicCPU.

Mosaic materializes the main insights of our characteriza-
tion via four principles. First, MosaicCPU slices oversized
hardware structures into fine-grained chunks and assigns col-
lections of chunks called Tiles to individual functions. Each tile
preserves the state of a function in the structure, maximizing
the opportunities for state reuse across context switches and
minimizing the interference between co-located functions.
Second, MosaicCPU assigns a different tile size to each
function based on the needs of the function. A tile spans non-
contiguous entries in a structure. Third, MosaicScheduler uses
a performance model to predict a nearly-optimal assignment
of tiles to functions after profiling a few invocations of the
functions. Profiling is performed online, while performance
modeling is performed offline, outside of the functions’ critical
path. Finally, MosaicCPU and MosaicScheduler are tightly
coupled: the hardware exposes its current state to the software,
which uses it for off-line performance modeling and on-line



micro-architectural state-aware scheduling. Next, we detail
each of the principles.

A. Fine-grained Per-Function Hardware Partitioning

1. Overview. In current processors, a function has access to the
entirety of stateful structures of the core it is running on. When
a function runs, it displaces the state of the functions that were
running on the core before, preventing them from reusing the
loaded micro-architectural state after they resume execution
on the core. MosaicCPU overcomes this challenge by slicing
large stateful hardware structures such as caches, TLBs, and
branch predictor units into smaller physical partitions called
Chunks, and dedicating a group of chunks called a Tile to
individual functions. Figure 7 shows the high-level overview
of the MosaicCPU architecture and its partitioning technique.
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Fig. 7: High-level overview of the MosaicCPU architecture.

Hardware structures are partitioned into fixed-sized chunks
of the same associativity. A chunk comprises a few physically
contiguous sets in a given hardware structure. In principle,
Mosaic can partition any stateful hardware structure. However,
to minimize complexity and avoid potentially increased access
latencies, Mosaic targets the most oversized structures whose
state saving brings the most performance benefits and whose
access latencies can be hidden. Specifically, it targets the
following 5 structures: L2 cache, L2 TLB, LLC, branch target
buffer, and branch predictor table.

A function is assigned a group of chunks called a tile in
each of the partitioned structures. The chunks in a tile are not
necessarily contiguous. A tile preserves the micro-architectural
state of a function for future reuse. For example, assume that
FuncA yields a core to FuncB. To preserve FuncA’s state,
MosaicCPU restricts FuncB to access entries only within
its tile, keeping the tile of FuncA uncontaminated. During
FuncB’s execution, MosaicCPU translates the accesses of
FuncB to the correct physical chunks.

Each partitioned structure has tags indicating which function
owns which chunk. The chunks with state for functions that
are not currently running are placed in a low power mode.
The goal is to save power while still retaining the state in the
chunks. On a context switch, the chunks of the pre-empted
function are put in low-power mode and the chunks of the
new function are activated.

A MosaicCPU has a hardware States Table that tracks
which functions currently hold their state in each of the core’s
structures. As shown in Figure 8, the States Table contains
as many entries as the maximum number of functions that
can concurrently hold state in the core structures. A given
entry contains the function ID and, for each of the partitioned
structures, the number of chunks currently assigned to the
function and the number of chunks that the function requires
to run efficiently based on the MosaicScheduler prediction. In
addition, the States Table entries have LRU bits. When a new
function needs additional chunks, they are taken from the LRU
function. The OS keeps one chunk in each structure.
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Fig. 8: The States Table in MosaicCPU tracks which functions
currently keep their state in the core’s structures.

2. Assigning tiles and chunks. MosaicCPU includes mecha-
nisms to assign and deassign chunks to/from functions. When
a core schedules a function invocation for execution, the OS
first checks the States Table to see if the function has the
required number of chunks in all the core’s structures. If so,
we call this a hit. In this case, for each structure, the OS sets
the chunks of the previously-running function to low-power
mode and activates the chunks of the new function. The LRU
bits in the States Table are updated.

If, instead, the new function is not in the States Table or
it is there but does not have all the required chunks in all
the structures, a miss occurs. If the function is not in the
States Table, the OS allocates an entry for the function in
the table, which includes filling in the Function ID and the
required chunks in each of the structures. Further, in all the
miss cases, the OS computes the number of chunks that the
new function is missing in each structure, then harvests such
number of chunks either from unused chunks or from chunks
owned by the LRU function or functions, and finally reassigns
these victim chunks to the new function. This process involves
updating the States Table and then, for each of the structures,
reassign the victim chunks. The latter consists of activating the
victim chunks, writing back and invalidating their entries, and
updating the function ID tags of such chunks in the structure.
Writebacks are only needed for the dirty lines in the caches



and the updated state bits in the TLB.
After this, the same operations as a hit occur: the chunks of

the previously-running function are put in low-power mode,
all the chunks of the new function are activated, and the LRU
bits in the States Table are updated.

For the state in Figure 8, if the core attempts to execute
FuncA, a hit will occur. However, if it tries to execute
FuncB, FuncD, or a new function FuncE, a miss will occur.

We model the write back overheads in our evaluation and
see that they are tolerable: the average overhead of writing
back a chunk is 500-600ns, while the highest overhead is 1.5-
2 µs. In a secure cloud environment, the whole cache hierarchy
is flushed at a context switch [10], [83], causing overheads of
a few ms, while offering isolation equivalent to Mosaic’s.

3. Memory de-duplication. Currently, Mosaic does not allow
memory de-duplication across users, following security guid-
ance from state-of-the-practice [79] and state-of-the-art [44].
However, Mosaic can be extended to support deduplication
and reduce the total memory footprint of the server, while
potentially sacrificing security. In such an environment, shared
pages (e.g., libraries and other code) can be marked as read-
only and shared in the page tables, and placed in a separate
shared-page tile. This tile is always active and shared across
all functions. When a core issues a request for a shared page
(indicated by a bit in the TLB), the structures search the
shared-page tile. Otherwise, they search the function’s tile.

4. Fine-grained power setting. Mosaic sets the voltage of
idle chunks to a lower value than the active chunks, so that
the static power of idle chunks is minimized. This is accom-
plished by having two voltage rails, Vddhigh and Vddlow, and
selecting the rail for each chunk based on an Active bit. As
a result, Mosaic does not need a voltage regulator per chunk.
The simple logic used is shown in Figure 9.
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Fig. 9: Per-chunk voltage selection in Mosaic.

A similar approach has been implemented in prior work,
with different voltage sources per section of the cache [85] or
even per cache line [22]. Switching the voltage for a chunk
has low overhead. The transition time for a drowsy cache line
is 1-2 cycles [22], while the transition for the whole core is
in the order of 1-2 µs [84]. In Mosaic, the chunks transition
between voltage settings only on a context switch; hence the
overhead is negligible. To reduce the overhead even further,
we can predict when a chunk will need to change rails and
perform the change in advance in the background.

5. Maintaining cache coherence. As in conventional systems,
different functions communicate with each other via RPC
messages and not via shared memory [73]. However, Mosaic
caches still need to support data sharing in situations such as
multi-threaded functions, concurrent invocations of the same
function, and migration of invocations across cores. Thus,
Mosaic caches are coherent. To achieve so, Mosaic ensures
that snooping hardware can snoop chunks that are in low-
power mode [22], [84]. Coherence messages and responses
in Mosaic include the FuncID, so that the controller of the
receiver cache can use the FuncID to identify the correct
destination chunk (Section III.B4). Another possible approach
would be to keep an up-to-date translation between core ID
and running FuncID for all the cores in the snooping hardware
of all the caches. In this case, the receiver cache would identify
the correct FuncID based on the ID of the core that sent the
coherence message.

B. Accessing a Function’s Tile

1. Translation process. Since functions are heterogeneous,
having a uniform tile size for all functions and in all structures
is inefficient. Instead, Mosaic sizes the tile of each function
in each structure differently, based on the requirements of
the individual function. For instance, data-intensive functions
may get larger tiles (i.e., tiles with more chunks) in data
caches, while branch-intensive functions may get larger tiles
in branch prediction units. Allowing non-uniformly sized tiles
may fragment the structures. Hence, to avoid fragmentation,
function’s tile is allowed to span physically non-contiguous
chunks in a given structure.

Accessing the tile of a function in a hardware structure
requires a level of indirection: the function’s addresses need to
be mapped to the correct positions in the structures. Consider
the case of a cache. Recall that, in a conventional cache, the
hardware splits the address into tag, index, and offset bits. In
Mosaic, the index bits are separated into two parts: if chunks
have S sets, then the logS least significant bits specify the
set within a chunk (Set bits), and the rest of the bits specify
the chunk (Chunk bits). This is shown in the upper part of
Figure 10. The figure shows a 2MB L2 cache organized into
2K sets of 16 ways. Mosaic splits the cache into 16 chunks of
128 sets and 16 ways. For simplicity, we only show 4 ways
per set and 4 sets per chunk.

Most of the time, a function’s tile will not cover the whole
structure and, instead, will have a number of chunks C lower
than the maximum number of chunks C0. In our design, S
and C are powers of two. Let us call index the value of the
index bits. Then, the hardware computes the ID of the chunk
of the function that needs to access as (index/S)%C. This
operation is performed as simple bitwise shift operations.

Mosaic enables such operation by the Mask register shown
in Figure 10. Mask has its logC least significant bits set to 1
and the rest to 0. Mask masks out some of the most significant
bits (MSBs) of the Chunk field. In the example, assume that
C=8. In this case, Mask masks out the MSB of Chunk as it
generates the chunk ID.
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Fig. 10: Detailed micro-architecture of Mosaic’s L2 cache.

To identify the desired chunk in the structure, Mosaic tags
each chunk with the function ID and the ID of the chunk in
the function (i.e., the chunk’s logical index within the tile). In
addition, there is an Active bit per chunk that is set only for
the chunks of the currently running function. This is shown in
Figure 10, which assumes that function Fx is running. With
this support, the output of the Mask register is compared to
the ChunkID and Active bits of all the chunks to determine
the target chunk.
2. Example operation. We showcase the access to two repre-
sentative partitioned structures: L2 cache and branch predictor.
The other structures, namely TLB, BTB, and LLC, follow the
same principles.
L2 cache. Figure 10 shows how the L2 cache is accessed.
We assume that a core issues a 46-bit physical address (PA).
Moreover, as multiple logical chunks may map to the same
physical chunk, Mosaic uses the combination of Tag and
Chunk bits as cache tag.

The whole translation is as follows. Mosaic takes the
Chunk bits and uses Mask to generate the chunk ID bits 1 .
These bits are compared to the ChunkID field in all 16 L2
chunks 2 . As there can be multiple chunks tagged with
the same ChunkID but owned by different functions, Mosaic
checks the ownership of the chunk 3 . There are two ways
to implement this functionality: use the chunks’ Active bits
or compare the FuncID tag with the ID of the currently-
running function. Mosaic uses the former approach for single-
threaded cores (as shown in the figure), and the latter approach
for SMT cores and coherence messages. After choosing the
correct chunk, Mosaic uses the set bits from the PA to select
the set in the chunk 4 . Then, it compares the tags of all the
ways of the set with the tag and chunk bits from the PA 5 .
Finally, Mosaic reads at the offset determined by the PA’s
offset bits 6 , as in conventional caches.
Branch predictor. We model a state-of-the-art 32KB TAGE-
SC-L branch predictor [67]. The predictor is composed of a
base predictor (2-bit counter bimodal table T0) and 15 tagged
tables with different history lengths and number of entries per
table. The base predictor is directly indexed using the program
counter (PC), while the tagged predictors are indexed using a
hash of PC and a subset of history length.

Mosaic does not change the predictor’s functionality. It only
modifies the way the predictor tables are accessed, as shown
in Figure 11. Specifically, each table (T0 to T15) is split into
16 chunks (for simplicity, the figure shows only three tables).
The sizes of the chunks are different in different tables (as the
total number of entries differs across tables), and a function
is assigned the same number of chunks and the same chunk
IDs in all the tables. Thus, the tables share the translation
mechanism, Mask, and ChunkID/Active tags. After computing
the hashes for all table accesses a , Mosaic breaks the table
index into chunk and set bits. It translates the chunk bits using
the same principle as for the L2 cache b . Then, it uses the
translated chunk and the set bits to access the correct entry in
the table c . Beyond this, Mosaic does not change the baseline
functionality of the branch predictor. Each table makes its own
prediction, and the table indexed with the longest history and
a tag match produces the final prediction d . As in L2 cache,
the tables are tagged with tag and chunk bits.
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Fig. 11: Architecture of Mosaic’s branch predictor based on
state-of-the-art TAGE-SC-L [67].

Overall, the process of translating addresses for the par-
titioned structures is simple. It involves only comparing for
equality the four bits of ChunkID with the PA’s masked chunk
bits, and an AND-gate with the Active bit. We estimate that
this takes about one processor cycle.

3. Minimizing function tags overheads. Mosaic software
assigns a 64B FuncID to each function—e.g., a hash of the
function name and the user ID [69]. Tagging all the chunks of
this function with this FuncID in all the partitioned structures
is a non-negligible storage overhead. To reduce this overhead,
MosaicCPU exploits the fact that only functions that have
an entry in the States Table of a core can have an allocated
chunk in any of the partitioned structures of that core. Hence,
MosaicCPU uses a function’s entry number in the States Table
as its unique ID. For example, in the system of Figure 8,
the chunks of FuncA and FuncB are tagged with 0 and
1, respectively. This approach saves substantial space in the
partitioned structures.

This improved design requires snooping caches to keep a
small table that maps FuncIDs to States Table entry numbers.
When an incoming coherence message is received, its FuncID



is translated into an entry number using this table before
checking against the tags of the chunks in the cache.

C. Tile Sizing for the Functions

1. Overview. To pack the state of many functions in a core,
Mosaic tries to allocate, for each function, the minimum
number of chunks in each partitioned structure that still
deliver acceptable performance for the function. Assume that
a function execution completes in Cfull cycles on a core
that does not partition structures. Then, Mosaic attempts to
find an assignment of chunks to the function that uses the
minimal amount of resources and still completes execution in
Cpar = Cfull × (1 + Threshold) cycles, where Threshold
is a small value like 0.1.

Determining the optimal tile sizes for a function through
exhaustive search is impractical, given the large exploration
space. One would need to execute the function with all
possible combinations of tile sizes in all of the partitioned
hardware structures, resulting in a few thousand invocations.

To address this limitation, Mosaic uses MosaicScheduler to
profile a few invocations of a function online with live traffic,
and then create a performance model offline to use for predic-
tions. Moreover, to reduce profiling overheads, MosaicSched-
uler also uses Transfer ML to predict a function’s optimal tile
sizes based on previously-profiled similar functions.
2. MosaicScheduler. We consider the two prediction methods.
Predictions via performance modeling. A function is initially
profiled with a few configurations. During the execution with
each configuration, MosaicScheduler collects the number of
cycles, the IPC, and the misses in each of the five partitioned
structures. Then, MosaicScheduler picks the configuration
with the smallest tiles that still finishes execution within the
required deadline as the temporarily optimal function size.
Finally, offline, MosaicScheduler takes this configuration and
predicts if any of its tiles can be further reduced.

For this prediction, MosaicScheduler considers each parti-
tioned structure in turn. For each one, it examines the trend
of misses as the size of the tile in the structure decreases
and, using the expected penalty of a miss in that structure,
estimates the function execution time if the tile in the structure
is reduced by one more notch. For example, as it considers the
BTB, MosaicScheduler observes the trend of miss increases
with smaller tile sizes in the BTB, predicts the extra number
of misses that will occur if the BTB tile size is reduced one
more notch and, given the cost of a miss, estimates the overall
function execution time with the smaller BTB tile size. If the
longer function execution time is acceptable, MosaicScheduler
reduces the function’s tile size in the BTB.

If there are multiple equally-desirable options, e.g., the
size of either the L2 cache or the BTB can be reduced,
MosaicScheduler stores these options as function alternatives.
Different alternatives can be used at different times depending
on which other functions are running concurrently and sharing
the structures.

All future invocations of a function execute with the pre-
dicted tile sizes. Mosaic does not change a function’s tile sizes

during an invocation of the function, but different invocations
of the same function can execute with different configurations
over time. MosaicScheduler monitors the execution and may
recompute the function’s tile sizes if the execution time is too
long or too short.

This model yields high accuracy with low overhead. Typi-
cally, MosaicScheduler needs only 8-10 function invocations
to accurately set the optimal sizes of a function’s tiles.
Predictions via transfer ML. To minimize the profiling over-
heads, MosaicScheduler also uses an approach based on trans-
fer ML. Instead of repeated profiling to establish the best tile
sizes for a function, MosaicScheduler takes some high-level
characteristics of the function (data and instruction footprint,
number of branch instructions, and IPC) and compares them
to the characteristics of some already-profiled functions. Then,
with a regression model, MosaicScheduler finds the most
similar functions and predicts the optimal sizes of the tiles for
the new function based on these similarities. To achieve high
accuracy, our prediction system needs only about 10 functions
of different properties to be initially profiled. Note that the
regression model is periodically augmented and retrained with
new functions as they execute in the system.

Figure 12 shows the approach. A random forest classifier
using a database of already profiled functions takes the charac-
teristics of a function (FuncX in the figure) and generates the
optimal sizes of the tiles for the function. We implement the
classifier in Python’s scikit-learn library [55]. As the model
outputs the tile size for each of the partitioned structures, it is
wrapped around a MultiOutputClassifier [54]. The model uses
100 trees, and the minimum number of samples required to
split an internal node is 2. The size of a tile is classified into
one of five classes: 1, 2, 4, 8, or 16 chunks. The prediction is
done in software and off the critical path of function execution.
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Fig. 12: Transfer machine learning architecture used to predict
the optimal size of new functions.

D. Scheduling Function Invocations

1. Overview. In conventional serverless frameworks, function
invocations are scheduled on a random core or on the least-
loaded core [35]. This approach would diminish the benefits of
Mosaic. Instead, to maximize performance, MosaicScheduler
is aware of the state in the cores when scheduling invocations.
It uses the interface exposed by the hardware and a set of
heuristics to decide on which core to place an invocation.



2. Scheduling invocations. Figure 13 shows how Mosaic-
Scheduler schedules function invocations on cores. When a
function invocation (such as the one for FuncX in the figure)
arrives at the server, MosaicScheduler checks the predictor
for the function’s optimal tile sizes. Based on this information
and the state of the cores, MosaicScheduler picks one core
to execute the invocation. Then, it deposits the invocation
augmented with the tile size information on the software
request queue of that core.
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Fig. 13: Scheduling a function invocation in Mosaic.

As shown in Figure 13, MosaicScheduler reads the state of
the States Tables of the cores to make its decision on where
to schedule the invocation. Generally, it favors a core that
already holds state for the function. Specifically, if there is
one or multiple cores with function state that are idle, the
scheduler randomly picks one of them. If there are no cores
with function state, the scheduler picks a core to balance load
across cores.

However, if all the cores with function state are busy, the
scheduler predicts in which case the invocation execution will
complete sooner: 1) if it waits in one of these cores until
it can execute and reuse the state or 2) if is assigned to
another, possibly idle core and can start executing sooner.
MosaicScheduler predicts the waiting time in the queues and
the execution time of the function invocation based on the
profiles of the functions. MosaicScheduler then picks the core
that would minimize the sum of waiting time and processing
time for the invocation.

To deal with occasional mispredictions, the system also
uses work-stealing. When a core becomes idle, its worker
thread periodically checks if there are cores with queued up
invocations. If so, the thread fetches invocations from other
cores and executes them locally. In this way, the system is
robust to head-of-the-line blocking.
3. Advanced scheduling policies. A scheduler that is unaware
of the resource needs of functions may co-locate functions that
require intense use of the same resource on the same core.
Such core would then suffer high contention on one resource
while the other resources would be underutilized. This problem
is not present in Mosaic. MosaicScheduler balances resource
utilization by spreading functions with similar resource re-
quirements across the cores of the server. Specifically, when
scheduling a function invocation that has no state in any of the
cores, the scheduler checks which core has enough idle chunks

to satisfy the invocation’s predicted needs or which core would
observe the least number of chunk evictions. This approach
could be generalized for function placement across servers in
a cluster. The cluster controller could classify functions as
cache, TLB, or branch intensive and place only functions with
distinct requirements on the same server.
4. Non-serverless workloads. Mosaic cores operate in two
modes: serverless and non-serverless. These modes are acti-
vated by setting the FaaSMode register. In the serverless mode,
all Mosaic optimizations are enabled. Conversely, in the non-
serverless mode, the cores operate in a conventional manner,
without structure partitioning. This enables high-performance
execution for monolithic applications.

Privileged software such as the Virtual Machine Manager
(VMM) sets the FaaSMode register on a cross-VM context
switch. When changing the FaaSMode register, the state of
all the partitionable structures is written back and invalidated.
Hence, the VMM tries to schedule non-serverless workloads
on cores that are already in non-serverless mode. The FaaS
platform controllers [6], [38], including MosaicScheduler, run
on one or more dedicated cores in non-serverless mode.
5. Harvest VMs. To reduce cost, some serverless environ-
ments use harvest VMs [89]. A harvest VM is created with
a minimal number of cores, but it can dynamically grow and
shrink by harvesting idle cores and releasing them when they
are needed by higher-priority VMs (called primary VMs). Pri-
mary VMs run latency-sensitive workloads, while harvest VMs
run workloads that can tolerate resource fluctuation, including
serverless functions. Mosaic can run in such environments.
When a core context switches between a primary and a harvest
VM, the VMM changes the FaaSMode register of that core.
6. Mosaic beyond serverless workloads. While our focus
is on serverless functions, Mosaic can offer benefits to other
workloads that also exhibit frequent context switches, small
working sets, and short execution times. One example of
such workloads is microservices, which are used in many
cloud deployments. Recent studies from Google [65] and
Alibaba [46] show that microservices often require numerous
RPC invocations, leading to frequent context switches that
challenge traditional execution environments. For example, an
individual microservice may issue hundreds of RPC calls. Mo-
saic can preserve the micro-architectural state across context
switches, thereby enhancing microservice performance.

IV. EVALUATION SETUP

1. Systems modeled. Our base architecture is a server with
16 cores and 128GB of main memory. Each core is a 6-issue
processor modeled after Golden Cove micro-architecture in
Intel Sapphire Rapids (SPR) [31]. Table II shows the detailed
micro-architectural parameters.

We use this base architecture to evaluate six server systems.
(1) Baseline is a conventional server that does not partition
hardware structures and schedules function invocations on the
least-loaded cores. (2) Baseline+Affinity augments Baseline
with simple affinity scheduling: a function invocation is sched-



TABLE II: Architectural parameters used in the evaluation.

Processor Parameters

Multi-core chip 16 6-issue OoO cores, 512-entry ROB, 3.6GHz
L1 data cache 48KB, 8-way, 4 cycles round trip (RT), 64B line
L1 instruction cache 32KB, 8-way, 4 cycles round trip (RT), 64B line
L2 cache 2MB, 16-way, 16 cycles RT, 30 MSHRs
L3 shared cache Slice: 1.8MB, 15-way, 60 cycles RT, 30 MSHRs
L1 data TLB 256 entries, 4-way, 2 cycles RT
L1 instruction TLB 256 entries, 4-way, 2 cycles RT
L2 TLB 2048 entries, 8-way, 12 cycles RT
Branch predictor 32KB TAGE-SC-L [67], 15 cyc. mispred. penalty
Branch target buffer 12K-entry, 4-way

Main-Memory Parameters

Capacity; 128GB
Frequency; Rate 1GHz; DDR

uled on the core that last executed the same function if the
core is idle. (3) Baseline+MosaicScheduler runs the software
support of Mosaic on conventional hardware while partitioning
L2 and L3 caches using Intel CAT [28]. This system maintains
a States Table per core in software, and does not require
any non-conventional hardware support. (4) Mosaic is our
complete Mosaic design. (5) Jukebox [63] is a recent hardware
proposal for serverless environments that enhances Baseline
with hardware-supported instruction prefetching. (6) Manycore
is a conventional server with 128 simple cores similar to ARM
Cortex A15 [7] that has the same area as Baseline.

We evaluate the architectures with full-system simulations.
We use the QEMU [70] emulator integrated with a modified
SST framework [57] and DRAM-Sim2 [60] memory simula-
tor. In this way, we simulate the operating system (Ubuntu
20.04), the serverless software stack, and our benchmark
functions. To validate our simulation accuracy, we also run
Baseline, Baseline+Affinity, and Baseline+MosaicScheduler
on the SPR server used in Section II and calibrated the simu-
lator. With L2 and L3 cache partitioning with Intel CAT [28],
the server has 8 classes of service (COS).

Our simulation infrastructure models the two main Mosaic
overheads. On a chunk eviction, we model efficient hardware
that walks the tags of the chunk writing back all dirty entries
and then invalidates all entries. Further, on changing the
voltage rail of a chunk, we add a fixed 5-cycle latency. To
model the area and power overheads, we use McPAT [42] and
CACTI [9]. Recall that Mosaic increases the tag width of the
partitioned structures by 4 bits. The increased tag size does
not affect the access latency and only marginally increases
the per-access energy. Mosaic further adds a hardware States
Table per core, per-chunk ChunkID, FuncID, and Active bits
in the partitioned structures, and some other small structures.
Overall, this hardware adds 43.5KB of storage per core, which
is 1.06% of the total core storage and 0.42% of the core area.

2. Workloads. We execute eight open-source serverless func-
tions described in Section II: ImgProc, MLSrv, EvStr, RiskQ,
WordCnt, HotelB, SocNet, and WebSrv. We invoke the func-
tions with real-world invocation traces from Microsoft Azure.
The traces cover peak-load and include 71,434 invocations

of 64 different functions. We randomly map each production
function to one of the eight evaluated functions. When multiple
production functions map to the same evaluated function, we
create separate instances for such functions, which do not
share any data or instructions.

In some experiments, we evaluate monolithic applications
from CloudSuite [52] which span multiple domains: data
processing (Spark and Hadoop), graph applications (GraphX),
web frontends (Nginx), web search engines (WebSrch), and
data serving (DataSrv).

V. EVALUATION RESULTS

A. Performance Improvements

We measure the end-to-end latency and throughput of the
function invocations on the evaluated systems. The end-to-
end latency of a function invocation is the time from when
the client sends a request until when it receives the result.
1. Tail latency. Figure 14a shows the P99 tail latency of our
functions in four architectures. We see that, on average, adding
affinity scheduling with Baseline+Affinity reduces the tail
latency by 15.5% over Baseline. On top of Baseline+Affinity,
partitioning the L2/L3 caches with Baseline+MosaicScheduler
reduces the tail latency by 12.8%. Mosaic is much more ef-
fective: it reduces the tail latency over the Baseline by 64.8%–
79.9%, with an average of 74.6%. The latency reductions
are higher for functions with short duration (e.g., EvStr), or
frequent context switches (e.g., HotelB).

Every partitioned hardware structure contributes to the
reduction in tail latency. For example, it can be shown that
not saving the function state of the L2 cache or the branch
target buffer in Mosaic increases the tail latency of functions
in Mosaic by 46% or 34%, respectively.
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Fig. 14: Tail and average latency of the function invocations.

2. Average latency. In addition to reducing the tail la-
tency, Mosaic also reduces the average latency. Figure 14b
shows the average latency with the four evaluated systems.
Baseline+MosaicScheduler reduces the average latency over
Baseline by 28.7%. As an average function invocation is more
likely to execute on a warm micro-architectural state than the
invocations at tail, Mosaic’s benefits are slightly lower for the



average latency than for the tail latency. On average, Mosaic
reduces the average latency by 59.6% and 37.4% over Baseline
and Baseline+MosaicScheduler, respectively.
3. Throughput. We define the throughput as the maximum
load a system can sustain without violating the SLOs of
functions. The SLO of a function is defined to be 5× the
execution time of the function on an unloaded system. Fig-
ure 15 shows the throughput for the evaluated functions in
kilo requests per second (kRPS) with Baseline and Mosaic.
Mosaic substantially improves the throughput across functions.
On average, it improves throughput by 225%. The reason
is that, with Mosaic, invocations can reuse their state while
still multiplexing their execution on a core with many other
invocations of the same or different functions.
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Fig. 15: Per-function throughput with Baseline and Mosaic.

4. Comparison to prefetching. Figure 16 compares the tail
latency of Baseline, Jukebox [63], and Mosaic. By reducing
the instruction misses, Jukebox reduces the tail latency over
Baseline by 12.1% on average. However, Jukebox does not re-
duce misses in data caches or branch predictors, and introduces
additional memory traffic for prefetching. In addition, after a
running function invocation is pre-empted and then scheduled
to run again, Jukebox does not reprefetch the instructons.
Compared to Jukebox, MosaicCPU reduces the tail latency
by 71.1% while using less on-chip area.
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Fig. 16: Tail latency of Baseline, Jukebox, and Mosaic.

5. Comparison to a manycore. Figure 17 shows the through-
put of Manycore and Mosaic for monolithic applications and
serverless functions normalized to Baseline. Due to space
limitations, the figure does not show all the serverless func-
tions, but the average bars include them all. We see that both
Manycore and Mosaic substantially improve the throughput
of all functions. On average, Mosaic and Manycore increase
the functions’ throughput by 225% and 271%, respectively.
However, the small cores of Manycore prevent it from running
the monolithic applications efficiently. On average, Manycore
reduces the throughput of monolithic applications by 68%
over the Baseline. On the other hand, Mosaic delivers the
same throughput as Baseline for these applications. Thus,
providers can efficiently run both serverless and non-serverless
workloads on Mosaic servers, improving cost-efficiency.
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Fig. 17: Throughput of Mosaic and Manycore for monolithic
applications and serverless functions normalized to Baseline.

6. Comparison to SMT. SMT cores can improve the through-
put of serverless workloads. However, they (1) compromise
security in public clouds due to side channel attacks, and (2)
increase tail latency due to resource contention. Figure 18
shows the tail and average latency of SMT cores in Baseline
and Mosaic averaged across all functions. The results are
normalized to single-threaded Baseline. We see that, for both
Baseline and Mosaic, 2- and 4-SMTs reduce the latencies due
to shorter wait times. As we add more threads (8-way SMT),
they compete for the shared resources and increase the tail
latency. In all configurations, Mosaic significantly reduces the
latency over Baseline.
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Fig. 18: Latency of Baseline and Mosaic with different num-
bers of SMT threads normalized to single-threaded Baseline.

7. Comparison to MXFaaS. MXFaaS [74] is a software
serverless platform that schedules concurrent invocations of
the same function on a set of cores “owned” by the function. In
addition, MXFaaS allows concurrent invocations of the same
function to share the same container—which reduces the mem-
ory footprint and the cold-start latency. By binding functions
to cores, however, MXFaaS may introduce load imbalance.
Mosaic is orthogonal to MXFaaS and can be combined with
it to further boost its performance. Figure 19 shows the tail
latency of Baseline, MXFaaS, Mosaic, and MXFaaS+Mosaic.
Compared to Baseline, MXFaaS and MXFaaS+Mosaic reduce
the tail latency by 53.1% and 79.3%, respectively.
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Fig. 19: Tail latency of Baseline, MXFaaS, Mosaic, and
MXFaaS+Mosaic.



B. Average Power Consumption Reduction

Mosaic keeps the inactive chunks of the partitioned struc-
tures at a low voltage level, reducing power consumption.
Figure 20 shows the average power consumed by each function
in Mosaic relative to that in Baseline. We see that, across
functions, Mosaic reduces the average power consumption
over Baseline by 22%. Power reductions are higher for func-
tions that require smaller tiles in the partitioned structures,
such as RiskQ. Overall, Mosaic reduces both average response
time and power consumption over the Baseline, resulting
in an average 80% decrease in the energy-delay product of
functions. For monolithic applications, Mosaic changes neither
performance nor power consumption over Baseline.
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Fig. 20: Power usage of Mosaic normalized to Baseline.

C. Co-locating Serverless and Monolithic Workloads

We evaluate Mosaic when co-locating serverless functions
with traditional monolithic applications [52] and allowing
harvesting of cores assigned to monolithic applications. A
monolithic application owns 8 cores, while serverless func-
tions execute on the other 8 cores of the server and can
steal more cores when they are idle. We run experiments
with each of the 6 monolithic applications of Figure 17, and
take the average across runs. Figure 21 shows the average
and tail latency of the serverless functions when running with
Mosaic normalized to when they run with Baseline. We see
that Mosaic has lower latencies than Baseline even when
functions are co-located with monolithic applications. In such
an environment, Mosaic reduces the average and tail latencies
by 49.8% and 67.8%, respectively.
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Fig. 21: Average and tail latency of functions when co-located
with monolithic applications normalized to Baseline.

D. Cost Savings of Mosaic at Scale

To evaluate the cost savings of Mosaic at large scale, we
model a datacenter with over a thousand servers running
both serverless functions and regular (i.e., non serverless)
VMs. We use large open-source production traces [48] for
the arrivals, departures, and resource requirements of func-
tions [69] and VMs [17]. Based on the peak utilization,
we provision servers using bin-packing. We evaluate three
different datacenter designs based on the types of servers they

have. Baseline uses only traditional servers for both workloads.
Baseline+Manycore uses a traditional server pool for regular
VMs and a separate Manycore pool for serverless workloads.
Mosaic uses only Mosaic servers for both workloads.

Figure 22 shows the number of servers needed in the
Baseline, Baseline+Manycore, and Mosaic datacenters while
varying the fraction of total CPU hours used by serverless
workloads. The number of servers is normalized to the number
of servers in Baseline with a 0% fraction of CPU hours for
serverless workloads. Note that, in the Baseline+Manycore de-
sign, the mix of traditional servers and Manycores is different
at different X-axis points—i.e., at different fractions of CPU
hours for serverless workloads.
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Fig. 22: Normalized number of servers in Baseline, Base-
line+Manycore, and Mosaic datacenters while varying the
fraction of total CPU-hours used by serverless workloads.

We see that, as the fraction of CPU hours devoted to
serverless workloads increases, Baseline needs to provision
more servers than the other two designs due to its lower
throughput for serverless workloads. Baseline+Manycore pro-
visions each server pool independently for each peak, which
leaves some of the servers underutilized for certain periods
due to fragmentation. Mosaic needs the lowest number of
servers because its servers are optimized to execute both types
of workloads. Overall, Mosaic reduces the number of servers
needed by 10-24% over Baseline+Manycore for a range of
fraction of CPU hours for serverless workloads. It never needs
more servers than the other designs. Therefore, Mosaic has the
lowest cost.

E. Sensitivity Studies

We conduct sensitivity studies to analyze the efficiency of
Mosaic under various conditions.
1. Sensitivity to system load. We maintain the mix of
functions in our workload and invoke the functions with Low,
Medium, and High loads using a Poisson distribution. These
loads correspond to attaining 25%, 50%, and 70% average
CPU utilization as in prior work [74]. Each function is invoked
with equal probability. Figure 23 shows the tail latency for
each function when running on Mosaic with the three loads
normalized to the tail latency when running on Baseline with
the same load.

We see that, at all loads, Mosaic has a substantially lower
tail latency than Baseline. At high loads, cores context switch
more frequently and, therefore, as the load increases, the
benefits of Mosaic over the Baseline are even higher. On
average, Mosaic reduces the P99 tail latency over Baseline
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Fig. 23: Normalized tail latency of Mosaic over the Baseline.

by 59.8%, 72.7%, and 80.9% in Low, Medium and High load,
respectively. We observe similar trends for average latency.
2. Sensitivity to core count. Serverless providers may want to
reduce their operating cost by reducing the number of cores.
We perform a sensitivity analysis to measure how the tail
latency changes as the core count decreases. Figure 24 shows
the tail latency of Mosaic with various core counts normalized
to the tail latency of the 16-core Baseline. On average, Mosaic
with 16, 12, 8, and 4 cores reduces the tail latency of the 16-
core Baseline by 75%, 66%, 39%, and 4%, respectively. Thus,
the provider can maintain the current response time of Baseline
at 4× lower cost with Mosaic.
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Fig. 24: Tail latency of Mosaic with different numbers of cores
normalized to Baseline with 16 cores.

3. Sensitivity to core oversubscription. In this experiment,
we vary the number of different functions that are scheduled in
a round-robin manner to execute on a given core. We measure
the highest sustainable load without SLO violations—i.e., the
throughput. With a higher number of different functions, the
core oversubscription increases, and the state in the core
structures in both Baseline and Mosaic gets polluted more.
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Fig. 25: Throughput while varying core oversubscription.

Figure 25 shows the changes in throughput in Baseline and
Mosaic as we increase the number of different functions sched-
uled on a core. Figure 25a shows the per-function throughput
and Figure 25b the total server throughput. We see that, as the
oversubscription increases, per-function throughput drops for
both Mosaic and Baseline due to more state pollution. On the
other hand, total server throughput increases as more functions
are running in a server. In all cases, Mosaic delivers much
higher throughput than Baseline. Even with 20 functions per

core, Mosaic delivers a 68% higher per-function throughput
than Baseline with a single function per core. Overall, Mosaic
delivers a much higher total server throughput than Baseline.
4. Sensitivity to number of different functions. In all of
our experiments before Section V-E, we run 8 different func-
tions. Recall that we set-up the environment so that different
instances of the same function do not share any instructions
or data (Section IV), ensuring that there is no state reuse
across them. Running the experiments with a higher number
of different functions should not change the results if the rate
of function invocation is the same. To prove it, we perform
a new experiment with 64 different functions [4], [36], [87],
[88] (as many as there are functions in the production traces)
with the same total invocation rate. We observe that the results
change very little. It can be shown that, with 64 different
functions, Mosaic reduces the average and tail latency by
62.1% and 76.5%, respectively, over Baseline. With 8 different
functions, Figure 14 showed that Mosaic reduces the average
and tail latency by 59.6% and 74.6%, respectively. Hence, our
methodology mimics environments with many functions, as in
real settings.

F. MosaicScheduler Prediction Accuracy

We compare the tile sizes created by MosaicScheduler for
the evaluated functions and the optimal tile sizes obtained via
exhaustive search. Figure 26 shows the tile sizes created by
MosaicScheduler in number of chunks for each function and
hardware structure. We see that most of the functions use 1-2
chunks. It can be shown that these tile sizes closely follow
the optimal ones. The only discrepancy occurs in HotelB
and SocNet for the BTB, where MosaicScheduler creates a
tile larger by one chunk. MosaicScheduler over-predicted the
tile sizes in these two cases and never under-predicted them,
ensuring no performance degradation.
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Fig. 26: Tile sizes created by MosaicScheduler.

Also, we measure the accuracy of our regression model
that predicts the size of non-profiled functions. We collect
metrics for 70 open-source functions [4], [15], [36], [76], [88],
find their optimal configurations via exhaustive search, and
create the dataset. We split the dataset into 80% train and
20% test. The resulting model produces accurate predictions.
For most of the structures, such as the branch predictor table,
the model predicts the optimal tile sizes with 100% accuracy.
For some structures, such as the branch target buffer, the
model can slightly overpredict the tile size. On average, the
model achieves 92% accuracy. The compute requirements of
the model are very low: a prediction takes a few hundred µs



and is done off the critical path. The model is queried only
when a function is admitted to the cluster for the first time.

VI. RELATED WORK

1. Partitioning schemes. Many researchers have explored
resource partitioning of architectural resources so that ap-
plications meet quality of service (QoS) (e.g., [13], [14],
[40], [51], [53], [61], [90], [91]). In some cases, they con-
sider concurrently-running SMT threads (e.g., [20], [56],
[77], [81]). PARTIES [14] tracks the tail latency of services
and moves the resources (LLC, memory bandwidth, I/O, or
cores) between services based on their deadlines. In these
works, resources are managed with a feedback controller [14],
Bayesian networks [61], multi-armed bandits [13] or ML
techniques [40], [51], [90]. These schemes are efficient for
long-running datacenter services and a relatively fixed mix
of co-located services. Using them in serverless environments
would not prevent a function from losing its state in a core on a
context switch. With SMT proposals, one would sacrifice the
security by allowing different functions to run concurrently
on the same core. Mosaic targets more dynamic serverless
environments with the goal of preserving the functions’ micro-
architectural state across context switches while keeping the
security guarantees.
2. Micro-architecture prewarm. A few studies have explored
the impact of serverless environments on the underlying hard-
ware. Shahrad et al. [68] observed that cold-starts, container-
ization, and inter-function interference reduce the effectiveness
of micro-architectural structures. Jukebox [63] uses on-chip
metadata to prefetch instructions for functions that start with a
cold micro-architectural state. In non-serverless environments,
Ahn et al. [2] preserve a VM’s context in the LLC on a cross-
VM context switch. Mosaic preserves a function’s micro-
architectural state across context switches without increasing
the on-chip area or memory bandwidth consumption.
3. Serverless optimizations. Optimizing serverless software
stacks has received substantial attention (e.g., [24], [43], [58],
[69], [72], [74], [75], [78]). MXFaaS [74] improves perfor-
mance by efficiently sharing a server’s resources between
concurrently executing same-function invocations. REAP [78]
records a function’s stable working set of guest memory pages
and prefetches it from disk. SpecFaaS [75] accelerates the exe-
cution of multi-function serverless applications with software-
supported speculative execution of functions. EcoFaaS [72]
redesigns the serverless software stack to improve energy
efficiency while maintaining high performance. Mosaic can
further enhance the effectiveness of such systems. Researchers
have also proposed using simple cores to host serverless work-
loads [71]. More advanced designs such as µManycore [73]
potentially move the tipping point closer toward processor
specialization for serverless environments.

VII. CONCLUSION

This paper presented a micro-architectural characterization
of serverless environments and proposed Mosaic, an architec-
ture optimized for serverless environments. Mosaic has two

components: (1) MosaicCPU, a processor architecture that ef-
ficiently runs both serverless and traditional workloads, and (2)
MosaicScheduler, a software stack for serverless systems that
maximizes the benefits of MosaicCPU. MosaicCPU partitions
micro-architectural structures into small chunks and assigns
tiles of such chunks to functions. MosaicScheduler sizes the
tiles for functions and schedules function invocations based
on the state of the tiles. Compared to conventional server-
class processors, Mosaic improves the throughput of serverless
workloads by 225% while using 22% less power. Conversely,
Mosaic achieves the performance of server-class processors
with one quarter of the cores.
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