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Abstract—Conventional radix-tree page tables have scalability
challenges, as address translation following a TLB miss po-
tentially requires multiple memory accesses in sequence. An
alternative is hashed page tables (HPTs) where, conceptually,
address translation needs only one memory access. Traditionally,
HPTs have been shunned due to high costs of handling conflicts
and other limitations. However, recent advances have made
HPTs compelling. Still, a major issue in HPT designs is their
requirement for substantial contiguous physical memory.

This paper addresses this problem. To minimize HPTs’ con-
tiguous memory needs, it introduces the Logical to Physical (L2P)
Table and the use of Dynamically-Changing Chunk Sizes. These
techniques break down the HPT into discontiguous physical-
memory chunks. In addition, the paper also introduces two tech-
niques that minimize HPTs’ total memory needs and, indirectly,
reduce the memory contiguity requirements. These techniques
are In-place Page Table Resizing and Per-way Resizing. We call our
complete design Memory-Efficient HPTs (ME-HPTs). Compared
to state-of-the-art HPTs, ME-HPTs: (i) reduce the contiguous
memory allocation needs by 92% on average, and (ii) improve the
performance by 8.9% on average. For the two most demanding
workloads, the contiguous memory requirements decrease from
64MB to 1MB. In addition, compared to state-of-the-art radix-
tree page tables, ME-HPTs achieve an average speedup of 1.23×
(without huge pages) and 1.28× (with huge pages).

Index Terms—Virtual memory, Page tables, Hashed page tables

I. INTRODUCTION

State-of-the-art page tables use the radix-tree organiza-
tion [5], [42]. On a TLB miss, address translation proceeds
by walking a tree of pages that progressively direct the search
to the leaf that contains the desired translation. This approach
uses memory efficiently and has been highly optimized with
multiple caching structures over decades. However, it is hardly
scalable. The reason is that, to obtain the correct translation,
the system potentially needs to perform up to four memory
accesses in sequence. Each access uses as its address the value
returned by the previous access. This process can be slow and
does not leverage the memory-level parallelism afforded by
modern processors. Furthermore, this process is getting slower,
as another level is being added to the translation tree to cover
the larger memory needs of emerging applications [40], [41].

An alternative to radix-tree page tables is hashed page tables
(HPTs) [18], [24], [26], [33], [36], [37], [39], [44], [45], [77],
[83], [88]. Here, translations are kept in a table. On a TLB
miss, address translation proceeds by hashing the virtual page
number and using the hash key to index the table to retrieve
the physical page number. Assuming that there are no hash
collisions, this approach only needs one memory access for
address translation.

Traditionally, HPTs have been out of favor for at least three
reasons pointed out by Barr et al. [9]. First, accesses to the
page table lack spatial locality. This is because hashing scatters
the translations of contiguous virtual pages. Second, the need
to associate a hash tag (i.e., the virtual page number) with each
HPT entry consumes space. Finally, handling hash collisions
is expensive: either sophisticated hardware or the OS need to
walk over the colliding entries [9], [39], [88].

An additional problem is that the theoretical idea of a single
global HPT that holds page table entries for all the active
processes in the machine does not work [24], [83], [88]. The
reason is that, to support page sharing across processes and
multiple page sizes, one needs additional levels of indirection
in the translation. Further, on process termination, the HPT
has to be sequentially searched to remove obsolete entries and
fix-up conflicts. The alternative is to have per-process HPTs.
However, this approach is challenging [77], as it is unclear
how to size the per-process HPTs. Allocating a large HPT for
each process risks exhausting memory.

Recent advances have made HPTs more compelling. For
example, to improve HPT locality, Yaniv and Tsafrir [88] place
multiple contiguous page table entries together in a single
cache line. Further, they encode the hash tag using unused bits
in each entry. Also, Skarlatos et al. [77] use Cuckoo hashing
to effectively handle hash conflicts. In addition, they support
per-process HPTs by assigning small HPTs when processes are
created, and dynamically growing the HPTs relatively cheaply
with Elastic Cuckoo Hashing.

Still, an important drawback in HPT designs is their need
for substantial contiguous physical memory. This need comes
from the apparent requirement to place the HPT (or, more
precisely, individual HPT ways) in contiguous physical mem-
ory. In our measurements, an HPT way can reach 64MB.
In practice, allocating a large chunk of contiguous memory
in a busy machine is often time-consuming and, under some
conditions, may cause program failure. In contrast, in radix-
tree page tables, finding contiguous memory is not a concern
because memory is allocated one page at a time.

This paper addresses this HPT shortcoming. To minimize
HPT’s contiguous memory needs, we introduce two tech-
niques: the Logical to Physical (L2P) Table and the use of
Dynamically-Changing Chunk Sizes. These techniques break
down the HPT into memory-efficient, discontiguous physical-
memory chunks. Moreover, we also introduce two more
techniques that minimize HPTs’ total memory needs and,
indirectly, reduce the memory contiguity requirements. These
techniques are In-place Page Table Resizing and Per-way



Resizing. We call our resulting design Memory-Efficient HPTs
(ME-HPTs).

We evaluate ME-HPTs with full-system simulations running
a set of memory-intensive workloads. Compared to state-of-
the-art HPTs, ME-HPTs: (i) reduce the contiguous memory
allocation needs by 92% on average, and (ii) improve the
performance by 8.9% on average. For the two most demanding
workloads, the contiguous memory requirements decrease
from 64MB to 1MB. In addition, compared to state-of-the-
art radix-tree page tables, ME-HPTs speed-up the workloads
by an average of 1.23× (without huge pages) and 1.28× (with
huge pages).

This paper’s contributions are:
• Memory-Efficient HPTs (ME-HPTs), which introduce four
new techniques that, directly or indirectly, minimize the con-
tiguous physical memory needed by HPTs.
• An evaluation of the ME-HPT techniques, which shows that
they solve the memory contiguity limitation of HPTs.

II. BACKGROUND

A. Limitations of Radix-Tree Page Tables

Current processors overwhelmingly use radix-tree page ta-
bles, which organize the page tables in a tree. On a TLB miss,
the hardware sequentially walks over each level of the tree.
Figure 1 shows the process for the x86-64 translation, as it
searches for the Physical Address (PA) corresponding to a
virtual address (VA). In the process, the hardware accesses
four page tables in sequence: PGD, PUD, PMD, and PTE.

PGD PUD PMD PTE+CR3

VA[47:39] VA[38:30] VA[20:12]VA[29:21] VA[11:0]

+ + + + PA
To TLB

VA

Fig. 1: Address translation in the x86-64 architecture.

Modern processors cache the intermediate page table entries
in small Page Walk Caches (PWCs) [2], [9], [12], [13] to
avoid accessing memory in each step. However, many emerg-
ing applications overflow such caches, introducing multiple
sequential memory accesses in the critical path. Furthermore,
manufacturers are increasing the number of levels in the
translation tree. For example, the new Intel Sunny Cove [40],
[41] adds a fifth level to the tree. Unfortunately, as very large
memories are likely to appear with the arrival of non-volatile
memory, this approach is hardly scalable.

B. Hashed Page Tables

Hashed page tables (HPTs) [18], [24], [26], [33], [36], [37],
[39], [44], [45], [77], [79], [83], [88] use a different design.
On a TLB miss, address translation consists of hashing the
virtual page number (VPN) and using the hash key to index
the page table. Assuming that there are no hash collisions,
only one memory access is needed for address translation.
HPTs have been implemented in the IBM PowerPC [38], HP
PA-RISC [37], and Intel Itanium [39] architectures.

Challenges of Hashed Page Tables. HPTs have several
limitations that have resulted in industry disfavoring them [9].
One is the loss of spatial locality in the accesses to the
HPT. This is caused by hashing, which scatters the HPT
entries of contiguous virtual pages. In addition, there is the
need to associate a hash tag with each page table entry,
which consumes memory space. Most importantly, there are
hash collisions, which lead to more memory accesses, as the
system walks collision chains [9]. Strategies such as collision
chaining [39] and open addressing [88] introduce expensive
memory references needed to walk over the colliding entries.

On top of all this, it is not possible to have a straightforward
design with a single global HPT that contains page table
entries from all the active processes in the machine [24], [88].
The reason is that supporting multiple page sizes (e.g., huge
pages) or page sharing between processes requires additional
complexity. For example, to support these two features, the
IBM PowerPC architecture uses a two-level translation pro-
cedure for each memory reference [38]. In addition, when
a process is killed, the system needs to perform a linear
scan of the entire HPT to find and delete the process entries.
Sadly, deleting an entry is costly: it may require a long hash
table look-up (for open addressing) or a collision chain walk.
Further, deleting a page table entry in open addressing may
affect the collision probes in future look-ups.

Making Hashed Page Tables Compelling. Recent works
have solved some of the HPT limitations. For example, Yaniv
and Tsafrir [88] propose an HPT design that uses Page Table
Entry Clustering, where multiple contiguous page table entries
are placed together in a single HPT entry with a size equal to a
cache line. Also, they propose Page Table Entry Compaction,
where unused upper bits of multiple contiguous page table
entries are repurposed to store the hash tag.

To simplify conflict handling, Skarlatos et al. [77], [79]
propose using cuckoo hashing [64] in HPTs. The HPT of a
given page size is made W-way set-associative, and each way
uses a different hash function. To insert an element p, one
way is selected and p is inserted in its hashing location. If
the selected entry was used, the current occupant q is kicked
out, and re-inserted in another way, in q’s hashing location
there. If that location was used, the ocupant is kicked out and
the process repeated. The process may repeat multiple times.
By carefully setting the allowed maximum HPT occupancy,
one can pick a reasonable maximum number of re-insertion
iterations allowed that makes the probability of a final HPT
entry eviction very small. In cuckoo hashing, an element
lookup needs to check all W ways (in parallel).

The design of Skarlatos et al. [77], [79] employs process-
private HPTs. Rather than using a default per-process HPT
size that could exhaust memory in a highly-used machine, the
HPT starts small and dynamically resizes. The scheme is called
Elastic Cuckoo Page Tables (ECPTs). An upsize operation is
triggered when HPT occupancy reaches a high threshold; a
downsize operation is triggered when HPT occupancy reaches
a low threshold. These upsize/downsize operations do not



stop program execution: they are efficiently overlapped with
program execution.
Mechanics of an HPT Upsize. When the occupancy of a
W -way HPT reaches a high threshold, a new, double-sized
W -way HPT is allocated [77]. From then on, every time that
the OS is invoked to insert an element into the HPT, the OS
uses the opportunity to rehash (i.e., move) one element from
the old HPT to the new HPT. To perform rehashes efficiently,
a Rehashing Pointer Pi is added to each way i of the old HPT.
In each way, Pi initially points to the HPT base. On a rehash of
an element from way i, the OS takes the element pointed to by
Pi, inserts it into way i of the new HPT, and increments Pi. At
any time, Pi divides way i of the old HPT into two regions: the
entries at indices lower than Pi (Migrated Region) and those
at indices equal or higher than Pi (Live Region). As gradual
rehashing proceeds, the migrated regions of the ways in the
old HPT keep growing. Eventually, when the migrated regions
completely cover all the ways, the old HPT is deallocated.

During resizing, the insertion of an element p in a W -way
HPT proceeds as follows. The system randomly picks one way
from the old HPT and uses its hash function to hash p. If the
hash key falls in the live region of the way, the element is
inserted in the old HPT; otherwise, p is hashed with the hash
function of the same way of the new HPT, and the element is
inserted in the new HPT. With this design, a lookup operation
for an element p during resizing only needs W probes. Indeed,
p is hashed using all the hash functions of the old HPT ways.
For each way i, if the hash key falls in the live region, the
old HPT way is probed; otherwise, p is hashed with the hash
function of the same way in the new HPT, and the new HPT
way is probed.

III. MOTIVATION FOR IMPROVING HPTS

While the aforementioned advances have made HPTs com-
petitive, HPTs still have an important limitation: they require
the allocation of substantial contiguous physical memory. This
is shown in Table I, which lists some characteristics of the
applications we analyze in this work. The applications will be
discussed in Section VI.

App. Data Page Table Page Table
Mem Contig. Mem. (KB) Total Memory (MB)
(GB) No THP No THP THP

Tree ECPT Tree ECPT Tree ECPT

BC 17.3 4 8192 17.12 36.0 16.9 36.0
BFS 9.3 4 16384 28.2 72.0 28.2 72.0
CC 9.3 4 16384 32.0 72.0 28.1 72.0
DC 9.3 4 16384 31.5 72.0 29.3 72.0
DFS 9.0 4 16384 28.1 72.0 28.1 72.0
GUPS 64.0 4 65536 140.0 288.0 0.4 0.8
MUMmer 6.9 4 1024 1.4 4.5 1.2 2.2
PR 9.3 4 16384 28.0 72.0 27.4 72.0
SSSP 9.3 4 16384 28.4 72.0 28.3 72.0
SysBench 64.0 4 65536 140.0 288.0 0.4 0.8
TC 11.9 4 2048 4.1 9.0 3.8 9.0
GeoMean 13.9 4.0 12697.6 23.5 56.0 7.9 18.0

TABLE I: Memory consumption of our applications.

Column 2 shows the maximum memory consumed by the
applications’ data. Columns 3 and 4 show the maximum con-
tiguous memory allocated by the page tables using the radix-

tree and ECPT organizations. In the radix-tree organization,
the contiguous memory is always 4KB, which is the size of
a page. In the ECPT organization, the numbers shown are
the maximum size of an HPT way. Intuitively, each way of
a set-associative HPT needs to be allocated in a contiguous
chunk of physical memory. The ECPT numbers correspond
to an environment without transparent huge pages (THP) [85]
for application data, which is the most unfavorable case. From
the table, we see that an HPT way uses 64MB of contiguous
memory in two applications.

Allocating large contiguous chunks of memory in a busy
server with highly-fragmented memory is expensive. We con-
duct experiments on a Linux-based server with different frag-
mentation levels using an open-source fragmentation tool [1].
We measure that, on average, allocating and zeroing out a
4KB, 8KB, 1MB, 8MB, and 64MB chunk takes 4K, 5K,
750K, 13M, and 120M cycles, respectively, at 2 GHz and 0.7
fragmentation (i.e., high) in the FMFI metric [32], [49]. These
numbers are consistent with prior measurements [49]. As
the chunk size increases, the overhead increases faster. More
importantly, when we increase the memory fragmentation over
0.7 in the FMFI metric, the system is unable to allocate 64MB
of contiguous memory and returns an error. Consequently, the
ECPT runs are unable to finish.

Columns 5-8 show the maximum memory consumed by
the page tables using the radix-tree and ECPT organizations
without and with THP. We can see that ECPT uses, on average,
138% and 128% more page table memory than radix tree
without and with THP, respectively. Compared to the memory
consumed by the applications’ data, this higher amount of
memory consumed by page tables is not significant. However,
as we will show later, reducing the total memory consumed by
HPTs can also help to minimize their contiguity requirements.

IV. DESIGNING MEMORY-EFFICIENT HPTS

To solve the HPT contiguity problem, we propose four novel
hardware-assisted primitives for memory-efficient HPTs. Two
of them directly minimize the contiguous physical memory
needed by HPTs: (i) Logical to Physical (L2P) Table and (ii)
Dynamically-Changing Chunk Sizes. The other two indirectly
minimize the contiguous physical memory needed by HPTs
by reducing the total physical memory needed by HPTs: (i)
In-place Page Table Resizing and (ii) Per-way Resizing.

A. Logical to Physical (L2P) Table

As shown in Figure 2a, a conventional HPT way needs to
be allocated in a contiguous memory region. This is because,
on a TLB miss, the Virtual Page Number (VPN) is hashed,
and the resulting key is added to the base of the HPT to obtain
the entry with the corresponding Physical Page Number (PPN).
This design does not admit discontiguities in the table—unlike
in radix page tables. In our experiments, we find applications
whose HPTs need up to 64MB per way. Finding 64MB
of contiguous memory is often time-consuming. Further, in
a machine with highly-fragmented memory, we find that it
causes the program to crash.
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Fig. 2: Reducing the HPT requirements for contiguous mem-
ory allocation using the L2P table.

To solve this problem, we propose a design that breaks each
way of the HPT into multiple fixed-sized Chunks that do not
need to be contiguous. Then, we add a small indirection table
in the Memory Management Unit (MMU) called the Logical to
Physical (L2P) table that redirects the accesses to the chunks.
The mechanism is transparent to software, and the hardware is
highly localized. With a judicious selection of parameters, each
chunk requires only a modest amount of contiguous memory,
and the L2P table is small enough to have a tolerable access
time.

The design is shown in Figure 2b. The HPT way is broken
down into a set of chunks of size ChunkSize (CS). On a TLB
miss, the hash of the VPN is divided by CS and added to the
base of the L2P table. The contents of that location (e.g., b1 in
Figure 2b) is a pointer to the base of the chunk that includes
the desired PPN. Then, the hash of the VPN modulo CS is
added to the base of the chunk to get to the entry with the
PPN.

At any time, the MMU only contains the L2P table of the
currently-running process. The OS saves and restores the L2P
table on context switch. This operation has low overhead. The
reason is that, as will see, the L2P table is not very large,
and we only need to save and restore the L2P table entries in
use—which are, on average, a small fraction of all the entries.

Because CS is a power of two, the division and modulo
operations in Figure 2b are simply a shift and a mask oper-
ation. Consequently, we estimate that an MMU-resident L2P
table, as it is accessed in hardware, adds about a couple of
cycles to a baseline page walk like in Figure 2a. Such overhead
is perfectly tolerable, at least for the Elastic Cuckoo Page
Table (ECPT) implementation of HPTs. This is because this
overhead can, in most cases, be hidden by overlapping it with
the access to the Cuckoo Walk Cache (CWC) of ECPTs. We
discuss the details in Section V-D.

B. Dynamically Changing Chunk Sizes

To minimize the L2P table access time, the L2P table has
to be small and, therefore, can at most hold pointers to several
tens of chunks. As a result, we need to set CS to a value so
that all these several tens of chunks combined together are
able to hold all the entries of one HPT way.

In practice, applications have widely-varying behavior. On
the one hand, big-data applications allocate vast amounts of

memory and may require tens or hundreds of MB per HPT
way. On the other hand, many system services, functions, and
microservices need little memory, and may only need a few
KB per HPT way. For the first class of applications to hold all
the page mappings in several tens of chunks, each chunk has to
be in the MB range. However, the second class of applications
would waste substantial memory with large chunks. Note that,
in all cases, a chunk is composed of one or multiple contiguous
physical pages allocated in one shot.

To address this problem, we propose to dynamically change
the chunk size assigned to an application, based on the
behavior of the application over time. We select a set of chunk
sizes that range from small to large. When an application
starts, it uses the smallest chunk size. As the application
increases its HPT way requirements, it may change its chunk
size. With this support, HPTs of both small- and large-memory
applications use non-contiguous memory efficiently.

Section V lists and justifies the L2P table sizes and different
chunk sizes that we use. However, to understand the operation,
we now show an example that uses a 64-entry L2P table and
8KB and 1MB chunks. Figure 3a shows an application that
starts by needing only 4KB for its HPT way. In this case, the
OS uses the small chunk size (8KB) and allocates only one
chunk. Only one entry of the L2P table is used, and the HPT
way uses half of the 8KB chunk. If the application doubles
its HPT, the OS simply fills-up the second half of the chunk,
while still using a single entry in the L2P table (Figure 3b).

64
64

4KB 
Page

…

64 8KB 
Chunk

1MB 
Chunk

4KB
Page

Fig. 3: Dynamically changing chunk sizes for memory effi-
ciency in non-contiguous HPTs. Shaded pages are in use.

If the application further doubles its HPT to 16KB, the OS
allocates a second small chunk and uses a second entry in the
L2P table (Figure 3c). The process repeats until all 64 entries
in the L2P table are used, for a total of a 512KB HPT way
(Figure 3d). If another doubling of the HPT occurs, it triggers
the transition of chunk size, which involves allocating a new
single 1MB chunk, rehashing the entries from the old chunks
into the new one, and freeing-up the old chunks. After the
resize, we use a single entry of the L2P table, pointing to the
1MB chunk (Figure 3e). Further upsizes allocate more 1MB
chunks and hence use more entries of the L2P table. Once all
64 L2P table entries point to full 1MB chunks, another HPT



upsize requires the allocation of a chunk of the next size up.
Overall, both small- and large-sized applications use HPT

memory efficiently. The hardware uses some bits in the MMU
to record which chunk size the HPT is currently using, and
whether an upsizing will entail a change in chunk size.

C. In-place Page Table Resizing

This technique and the next one reduce the total physical
memory needed by HPTs; we will see later that, indirectly,
they also minimize the contiguous physical memory needed.

To understand this technique, recall that our state-of-the art
baseline scheme (i.e., ECPT) resizes the HPT dynamically
while the program runs and that, during resizing, both the
old and the new HPT co-exist in memory. This approach
can consume sizable memory. For example, some of our
applications need an HPT of 192MB, organized in three 64MB
ways. Therefore, during resizing to 192MB, the new and
old HPT tables consume 192 + 96 = 288MB. In addition, a
resizing operation takes time, and during most of a program’s
execution time, there are two HPTs (old+new) co-existing in
memory; we measure that, on average, this is the case for
87.3% of the total execution time. With multiple processes
running in the machine, each with one HPT per page size,
there may potentially be several HPT resizings occurring
concurrently, consuming substantial memory.

The OS needs to rehash all the old HPT entries. However,
it rehashes a single entry (or a small group of them) only
when a new HPT entry is inserted. The reason for waiting
to rehash entries until a new entry is inserted is to reuse the
OS invocation that the insertion triggers. Of course, one could
allocate another OS thread to perform all the rehashes in the
background, but that would add overhead.

To reduce the memory used, in this paper, we propose In-
Place HPT resizing. The idea is for the new and old HPTs to
share the same memory space. This ensures that, at any given
time, the memory used by the two HPTs is equal to the bigger
of the two, rather than the sum of them. To see it pictorially,
Figure 4 shows how to expand an HPT (a) out of place and
(b) in place. For simplicity, the picture shows only one way
of the HPT. Moreover, it depicts the HPT way as contiguous
memory. In reality, as per Sections IV-A and IV-B, the HPT
ways (old and new) are composed of a set of non-contiguous
chunks.

To be consistent with the original ECPT paper [77], Figure 4
assumes that addresses increase from the top of the figure to
the bottom. Recall that in HPTs undergoing conventional out-
of-place resizing (Figure 4a), there are three regions: Migrated
and Live regions in the old HPT, and the new HPT. Insertions
place entries into the new HPT or into the Live region.
Rehashes expand the Migrated region downward by taking
entries from the Live region and inserting them into the new
HPT. No entry is placed in the Migrated region.

In our proposed in-place resizing (Figure 4b), both in-
sertions and rehashes may place entries into the Migrated
region—since it overlaps with the new HPT. To prevent these
new entries from causing confusion, we propose a simple

Live Region
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Region

New Space

(b)

Live Region

Migrated 
Region

New Space New
HPT

(a)

Old
HPT

Old
HPT

New
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Fig. 4: Out-of-place and (a) in-place (b) resizing of an HPT
way. For simplicity, the picture depicts the HPT ways (old and
new) as contiguous memory. In reality, they are both composed
of a set of non-contiguous chunks.

technique: the hashing function used for the new HPT is kept
the same as in the old HPT; however, to index the new HPT,
we use one additional bit of the resulting hash key (in an
upsize) or one fewer bit (in a downsize). The bit added is the
one beyond the most significant bit (MSB) of the hash key;
the one removed is the MSB of the hash key. In addition, we
only upsize or downsize each way of the HPT to the next
higher/lower power of two.

Detailed Rehash Algorithm. During an HPT resizing, a
rehash operation moves an element from way i of the old
HPT (Hi) to the same way in the new HPT (H ′

i). The
element moved is the one at the top of the Live region of
Hi, and is pointed to by the Rehashing pointer of the way
(Pi) (Section II-B). After the move, Pi is incremented. To
describe the algorithm, we first consider an HPT upsize, and
then an HPT downsize.

In an HPT upsize, assume that the entry to rehash is
OldEntry in Figure 5a. We hash its VPN using the original
hash function but use one additional bit of the resulting hash
key. At this point, two outcomes are possible: if the additional
bit is zero, the entry is kept in place (NewEntry in Figure 5b); if
it is one, the entry is moved to the second half of the new HPT,
at the same offset as in the old HPT (NewEntry in Figure 5c).
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New
HPT

(a)

New Entry

New
HPT
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New Entry

(c)
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Fig. 5: Example of an in-place rehashing operation for upsiz-
ing (a to c) and downsizing (d to f).



In an HPT downsize, the opposite happens: two entries from
the old HPT may be rehashed into the same position in the new
HPT—and, therefore, one will be cuckooed into a different
way. As an example, the two OldEntry entries of the old HPT
in Figures 5d and 5e will be rehashed into the same position
of the new HPT, given by NewEntry in Figure 5f.

Other Operations. The other operations performed on the
HPTs during resizing use the same algorithm as described by
Elastic Cuckoo Hashing [77]. In the following, we assume we
are in an HPT upsize. In a lookup, for each way i, the hash key
created using the old function is compared to the Rehashing
Pointer (Pi). If the hash key is higher than or equal to Pi, the
old hash key is used to index the HPT; otherwise, the new
hash key is used to index the HPT. The new hash key is the
same as the old one except that it includes the bit beyond the
MSB. Only a single access per HPT way is needed.

A delete follows the lookup procedure and, on finding the
element, clears the entry. Finally, an insert involves randomly
picking a way i, using the old function to create a hash key,
and comparing the hash key to Pi. If the hash key is larger
than or equal to Pi, the element is inserted in the entry pointed
to by the old hash key; otherwise, it is inserted in the entry
pointed to by the new hash key. In case of a conflict, the
existing entry is cuckooed into a different way.

Interaction between Resizing and Changing Chunk Sizes.
All the upsizing and downsizing HPT operations that do not
involve a change in chunk size perform in-place HPT resizing.
All the upsizing and downsizing HPT operations that need a
change in chunk size require, by construction, out-of-place
HPT resizing.

D. Per-way Resizing

State-of-the-art proposals organize the HPT in a set asso-
ciative manner to reduce conflicts and, on a resize, upsize or
downsize all W ways. This approach is potentially memory
inefficient: the HPT doubles/halves in size every time, while
it may be that the HPT only needs a little more/less space.

To reduce waste in HPT memory consumption, we propose
Per-Way Resizing. The idea is to upsize or downsize only one
way at a time. With this proposal, on an upsize, one needs
to allocate only 1/W of the memory that would otherwise
be added for the new HPT. As in the previous section, this
proposal is applied to HPT ways that are composed of multiple
non-contiguous chunks.

While this improvement saves memory, it introduces two
new issues. Specifically, we need to determine which way to
pick to upsize or downsize while avoiding way imbalance. We
also need to determine what algorithm to use to insert an item
into the HPT. We consider these issues next.

Deciding Which Way to Upsize or Downsize. In the
conventional all-way resizing, the OS keeps a counter with the
whole HPT occupancy; when the counter reaches a threshold,
the HPT is resized. With per-way resizing, the OS tracks
the occupancy of each individual way with per-way counters.

When one of the counters reaches a threshold, the correspond-
ing way is resized.

One needs to avoid repeatedly upsizing (or downsizing)
the same way at the expense of other ways. To keep the
different ways somewhat balanced, we add one additional
condition before allowing the resizing of a way. Specifically,
the candidate way cannot already be larger than another way
(in an upsize) or smaller than another way (in a downsize).
With this constraint, a way will never be more than double (or
less than half) the size of another way.

Deciding Where to Insert an Element. In a conventional
design where all the ways are equally sized, one can randomly
choose a way during insertion, and naturally maintain a
balanced occupancy of the ways. Such random insertion is
not appropriate with per-way resizing: the upsized way would
not be utilized according to its full capacity while the other
ways would continue to be highly occupied. The result would
be frequent conflicts and re-insertions.

To avoid this problem, we propose a weighted random
insertion algorithm. Specifically, since the OS knows the
occupancy and size of each way, it also knows how many free
slots each way has. Hence, our algorithm sets the probability
of inserting the element in way i to be the ratio between the
number of free slots in way i and the total number of free
slots. In other words, we generate a random number between
0 and 1, and give a weight FREEi/FREEsum to each way i.
Moreover, if way i is larger than other ways and its occupancy
has already reached the predefined threshold to upsize, we set
its weight to zero—effectively preventing insertions in i.

With this algorithm, we get the desired behavior. First, after
the upsize of a way, most of the insertions pick that way—
delaying the upsize of other ways. Second, once the occupancy
of a large way reaches the threshold value, insertions do not
pick that way before upsizing smaller ways.

E. Reducing HPT Size Reduces Memory Contiguity

The last two techniques were software strategies to reduce
the size of the HPT. However, they can also indirectly reduce
the memory contiguity requirements of the HPT. The reason is
that a smaller HPT may be able to operate with smaller-sized
memory chunks than a larger HPT. For example, we will see
in the Evaluation Section that, thanks to these techniques, two
of our applications can build their HPTs with 1MB memory
chunks rather than requiring chunks of the next larger size.

V. ME-HPT IMPLEMENTATION ASPECTS

In this section, we discuss several aspects of ME-HPTs: L2P
table entry stealing, the chosen chunk sizes, the scalability of
L2P tables, and hiding the access to the L2P table.

A. L2P Table Entry Stealing

To minimize access time, we size the L2P table of an
application to have 32 entries for each page size supported
and HPT way. Recall that we support three page sizes (i.e.,
4KB, 2MB, and 1GB). If we assume three HPT ways, then
we have nine subtables in the L2P table for an application.



Consider now way i’s three subtables for 4KB, 2MB, and
1GB page sizes. It is very unlikely that all three subtables
will be highly utilized. Most likely, one or more of them will
have few entries. Consequently, we allow the subtable of one
page size to steal entries from the subtables of other page sizes
if it needs them. The result is a better utilization of the L2P
entries.

Figure 6a shows our proposed design. In the MMU, we lay
out the three subtables of the same way i contiguously. The
1GB one is placed in the middle, since it is the least likely to
be used. The 4KB and 2MB L2P subtables grow in opposite
directions. Figure 6a shows the case where the 4KB and 2MB
subtables use two entries each.
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Fig. 6: Stealing entries across the L2P subtables of different
page sizes and same way. The non-white entries are in use.

Assume now that the 4KB subtable uses all its 32 entries
and needs to be upsized. If no entry in the 1GB subtable is in
use, we let the 4KB subtable take all the entries from the 1GB
subtable, and grow to 64 entries (Figure 6b). The chunk size
is kept the same. If later, the 4KB subtable wants to upsize
again, it can only do it by allocating a chunk of the next bigger
size and rehashing all its entries there, as we saw before.

If, after the 4KB subtable takes all the entries from the
1GB subtable, an entry is needed in the 1GB subtable, the
system uses the most significant entry of the 2MB subtable
(Figure 6c).

B. Chosen Chunk Sizes

With this support, we choose the sizes of chunks to be, from
smaller to larger, 8KB, 1MB, 8MB, and 64MB—although,
for our applications, we only need 8KB and 1MB chunks.
Specifically, let us we start with 8KB, the smallest chunk size.
When one of the subtables, using 8KB chunks, reaches 64
entries (Figure 3d) its HPT way extends over 8KB × 64 =
512KB. If the HPT way now needs to be upsized, the OS
changes the chunk size to 1MB, allocates a single chunk, and
uses a single entry in the L2P table (Figure 3e).

If the application fills up all 64 entries with 1MB chunks,
it uses 64MB per way. If the HPT way now needs to be
upsized to 128MB, the OS uses the next chunk size. Since this

case is rare and we do not want to allocate large contiguous
chunks, we set the next chunk size to 8MB. In this case, the
OS allocates 16 chunks and uses 16 entries in the L2P table. If
the application fills up all 64 entries and the HPT way needs
to be upsized, the next chunk size (very rarely used) is 64MB.

The size of the L2P table of an application is modest.
Consider the worst-case scenario of using 8KB chunks. With a
physical address of 46 bits, the base address of an 8KB chunk
is 33 bits followed by 13 zeros. We only need to store the 33
bits. Then, the overall size of the L2P table is 32 entries × 3
ways × 3 page sizes × 33 bits = 1.16KB.

Note that the chunk sizes do not need to be limited to those
listed above. Instead, the OS could make per-process and per-
system state decisions. To determine the next chunk size, the
OS could dynamically use heuristics based on the current level
of fragmentation and the expected final HPT way size. We
consider this topic future work.

C. Scalability of L2P Tables with Changing Chunks

With L2P tables and changing chunk sizes, ME-HPT pro-
vides a scalable solution for HPTs. As indicated above, the
MMU contains the L2P table of only the running process.
Including all the page sizes and ways, the L2P table for a
process has 288 entries and uses 1.16KB of memory. In a
context switch, the OS only saves and restores the valid entries
in the L2P table, which are clustered at the extremes of the
table. Applications typically use only a few entries of the L2P
table. Section VII-E4 will show that, on average, they only
use 53 entries. Hence, the overhead of saving and restoring
the L2P table is modest. In addition, in a virtualized system,
the overhead is even smaller for two reasons. First, there are
no guest L2P tables because guest HPTs are not contiguous,
as they are spread in host pages. Second, on a guest context
switch, the host L2P table is not saved or restored.

For the HPT, the largest contiguous memory needed is that
of one chunk (i.e., 8KB or 1MB in our applications). Table II
shows, for the different chunk sizes, what is the maximum size
of the HPT way that can be created and, for the resulting total
HPT (i.e., all three ways), what is the maximum size of the
physical memory space that can be mapped with 4KB pages
and with huge (2MB) pages. We see that, with 8KB chunks,
ME-HPT can build a 64x8KB=512KB HPT way. If the HPT
is for 4KB pages, the resulting 3-way HPT can map 768MB
of application data; if the HPT is for 2MB pages, the resulting
3-way HPT can map 384GB of application data.

Chunk Max HPT Max Total HPT Mapping Max Total HPT Mapping
Size Way Size Space with 4KB Pages Space with 2MB Pages

8KB 512KB 768MB 384GB
1MB 64MB 96GB 48TB
8MB 512MB 768GB 384TB
64MB 4GB 6TB 3PB

TABLE II: Maximum HPT way sizes and maximum total HPT
mapping space for different chunk sizes. For our applications,
we only need 8KB and 1MB chunk sizes.



With 1MB chunks, ME-HPT can build a 64x1MB=64MB
HPT way. As before, if the HPT is for 4KB pages, the 3-way
HPT can map 96GB of application data; if the HPT is for
huge pages, the 3-way HPT can map 48TB of data.

With 8MB chunks, ME-HPT can build a 64x8MB=512MB
HPT way. If the HPT is for 4KB pages, the 3-way HPT can
map 768GB of application data; if the HPT is for huge pages,
the resulting HPT can map 384TB of application data.

If the application is even bigger, we can switch to 64MB
chunks. In this case, the ME-HPT can build a 64x64MB=4GB
HPT way. If the HPT is for 4KB pages, the 3-way HPT can
map 6TB of application data; if the HPT is for huge pages,
the resulting HPT can map 3PB of application data.

When the OS upsizes an HPT way, it allocates one or mul-
tiple additional chunks. These chunks are neither contiguous
with each other nor contiguous with the chunks of the current
HPT. An HPT way is always a collection of non-contiguous
chunks. While, for our applications, the chunk size is 8KB
or 1MB, larger applications may need larger chunks. To find
space for large chunks in a highly-fragmented machine, the
OS may perform memory compaction or swap-out pages, as
is ordinarily done to allocate huge pages. An upsizing cannot
fail unless it requests a chunk of a size so big that the OS is
unable to provide so much contiguous memory.

D. Hiding the Access to the L2P Table

The extra latency added by the access to the L2P table
(Section IV-A) does not noticeably slow down a page walk in
an ECPT design. The reason is that this extra latency can be
overlapped with the access to the Cuckoo Walk Cache (CWC)
hardware structure in ECPTs.

Figure 7 shows the design. On a TLB miss, the translation
for the missing virtual address can be present in any of the
ways of the HPT of any page size. To trim the number of
memory locations to check, the ECPT hardware first accesses
the CWC hardware caches. The outcome determines which
way of the HPT of which page size should be accessed. In
parallel, if a resize is in progress, the rehash pointers are
checked to decide whether the old or the new HPT should
be accessed.

Fig. 7: Overlapping accesses to the L2P table.

In the meantime, we propose that the hardware accesses
the L2P table of the process in the MMU, and generates
the potential memory addresses to access. After the CWC
and rehash pointer checks finish, they select which memory
access(es) to perform. Hence, the latency of the L2P table
access is hidden.

The only time when the L2P table access is not hidden is
in a cuckoo re-insertion due to HPT conflicts. In this case,
the CWC is not accessed, and the latency of the L2P table
access is on the critical path. Fortunately, in this case, the few-
cycle access latency is noise. The reason is that an element
insertion or cuckoo rehash is performed by the OS rather than
by hardware, and invoking the OS has much higher overhead.

VI. EXPERIMENTAL METHODOLOGY

Modeled Architectures. We use full-system cycle-level sim-
ulations to model a server architecture with 8 cores and 64
GB of main memory. Our Baseline architecture models Elastic
Cuckoo Page Tables (ECPTs) [77]. We enhance the baseline
architecture with our design (ME-HPT). We compare the two
architectures (i) with only 4KB pages and (ii) with multiple
page sizes by enabling Transparent Huge Pages (THP) in the
Linux kernel [85]. We use 3-way HPTs. We also model a
system with state-of-the-art radix-tree page tables. Table III
shows the architectural parameters. Recall that PTE, PMD, and
PUD are the names of the structures associated with pages of
size 4KB, 2MB, and 1GB, respectively. An HPT is upsized
when its occupancy gets above 0.6, and downsized when it
drops below 0.2. An HPT way always starts with 8KB.

Processor Parameters
Processor 8 OoO cores, 256-entry ROB, 2GHz
Private L1D+L1I caches 32KB, 8-way, 2 cycles RT, 64B line
Private L2 cache 512KB, 8-way, 16 cycles RT
Shared L3 cache 2MB per core, 16-way, 56 avg cyc RT
L1 DTLB (4KB pages) 64 entries, 4-way, 2 cycles RT
L1 DTLB (2MB pages) 32 entries, 4-way, 2 cycles RT
L1 DTLB (1GB pages) 4 entries, 2 cycles RT
L2 DTLB (4KB pages) 1024 entries, 12-way, 12 cycles RT
L2 DTLB (2MB pages) 1024 entries, 12-way, 12 cycles RT
L2 DTLB (1GB pages) 16 entries, 4-way, 12 cycles RT
# of page walkers 4 (both in ME-HPT and radix tree)
PWC for radix tree 3 levels, 32 entries/level, 4 cycles RT,

fully associative, 0.75KB total size
Memory Parameters
Capacity; #Channels; #Banks 64GB; 4; 8
Memory access latency 200 cycles RT (Average)
Frequency; Data rate 1GHz; DDR
ME-HPT Parameters
Initial HPT for each page size 128 entries × 3 ways each
Initial PMD/PUD CWT [77] 128 entries × 2 ways each
PMD-CWC; PUD-CWC [77] 16 entr, 4 cyc RT; 2 entr, 4 cyc RT
Hash functions: CRC Latency: 2 cyc; Area: 1.9*10−3mm2

L2P table size 32entr x 3ways x 3pagesizes (1.16KB)
Shift + L2P access + Mask 4-cycle latency
Chunk sizes Used: 8KB,1MB; Unused: 8MB,64MB
HPT occupancy thresholds 0.6 for upsize, 0.2 for downsize
Memory fragmentation 0.7 FMFI

TABLE III: Architectural parameters used in the evaluation.
RT stands for round trip from the core.



Modeling Infrastructure. We integrate the Simics [58] full-
system simulator with the SST framework [7], [72] and the
DRAMSim2 [74] memory simulator. We use Intel SAE [17]
on Simics for OS instrumentation. We model and evaluate the
hardware components of ME-HPT in detail using SST.

Simics intercepts on-the-fly all the instructions executed and
all the virtual memory operations performed. These opera-
tions are then processed by our back-end cycle-level proces-
sor/memory simulator modeling ME-HPTs. Simics provides
the actual page table and memory contents for every memory
address. With this infrastructure, we are able to implement
any page table organization in the simulator, while using the
actual page table entry (PTE) contents. Hence, the sequence
of PTEs used in the simulated ME-HPT and the radix-tree
page tables is the same, although the page table organizations
and memory allocations are different. We account for all the
HPT overheads. For the allocation overheads, we use real
system measurements on a system fragmented with an open-
source tool [1]. In the evaluation, we use a high memory
fragmentation of 0.7 FMFI [49].

Applications. We evaluate eleven applications from domains
ranging from graph processing to high-performance comput-
ing (HPC), bioinformatics, and systems. We evaluate eight
graph-processing applications from the GraphBIG benchmark
suite [60] with input graphs of 1M nodes. They are: Between-
ness Centrality (BC), Breadth-First Search (BFS), Connected
Components (CC), Degree Centrality (DC), Depth-First Search
(DFS), PageRank (PR), Shortest Path (SSSP), and Triangle
Count (TC). In the HPC domain, we use GUPS from the
HPC Challenge benchmark [57]. GUPS is a random access
benchmark that measures the rate of integer random memory
updates. In the bioinformatics domain, we use MUMmer from
the BioBench suite [4], which performs genome alignment.
Lastly, we select the Memory benchmark from the SysBench
suite [81], which stresses the memory subsystem. For each
application, we measure the first 550M instructions per thread.

VII. EVALUATION

A. Memory Contiguity Savings

Figure 8 shows the maximum size of the contiguous mem-
ory allocated by the baseline ECPT and by ME-HPT. The data
corresponds to the HPTs for 4KB pages, which is the worst
case. For each application, the figure shows bars for ECPT,
ECPT with THP, ME-HPT, and ME-HPT with THP.
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Fig. 8: Maximum size of the contiguous memory allocated for
the HPTs for 4KB pages, without and with THP.

With ECPT, one needs to allocate a large contiguous region,
equal to the size of one HPT way. This size is 16MB for
most graph applications, and 64MB for GUPS and SysBench
without THP.

ME-HPT needs much less contiguous memory allocation.
Thanks to the L2P table and dynamically-changing chunk
sizes, the maximum contiguous allocation size is equal to
either 8KB or 1MB—which are the only two chunk sizes
needed in the evaluated applications. In most cases, ME-HPTs
end up using 1MB chunks. As shown in Figure 8, on aver-
age, ME-HPT reduces the maximum size of the contiguous
memory allocated by 92% and 84% without and with THP,
respectively. For the two most demanding workloads (GUPS
and SysBench), the contiguous memory requirements decrease
from 64MB to 1MB.

B. Application Performance

Figure 9 shows the speedup of ME-HPT, ECPT, and Radix
(with and without THP) over Radix without THP. ME-HPT
delivers 1.09x and 1.06x average speed-ups over ECPT with-
out and with THP, respectively; ME-HPT delivers 1.23x and
1.28x average speed-ups over a system with radix-tree page
tables, without and with THP, respectively. ME-HPT is faster
than ECTP in practically all the cases. The speed-ups result
from the lower cost of memory allocation in ME-HPT. Indeed,
ME-HPT only allocates chunks of size 8KB and 1MB, while
ECPT allocates contiguous regions of up to 64MB.
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Fig. 9: Speedup of ME-HPT, ECPT, and Radix, without and
with THP, over Radix without THP.

If we increase the memory fragmentation over 0.7 FMFI, the
system is unable to allocate 64MB of contiguous memory and
returns an error. Consequently, the ECPT runs do not finish
for the GUPS and SysBench applications.

C. Memory Savings

Figure 10 shows, for each application, the reduction in page
table memory by ME-HPT over the ECPT baseline. For each
application, we show bars without and with THP. Each bar is
divided into the contributions of our two techniques: in-place
resizing (Section IV-C) and per-way resizing (Section IV-D).
In addition, the numbers on top of the bars are the absolute
memory reductions in Mbytes.

On average, ME-HPT saves 43% and 41% of the page table
memory used by the baseline ECPT design, without and with
THP, respectively. The numbers on top of the bars show that
the average memory savings per application are 37MB and
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Fig. 10: Reduction in page table memory attained by ME-HPT
over the ECPT baseline. The number on top of each bar is the
absolute reduction in Mbytes.

20MB, without and with THP. Further, both in-place resizing
and per-way resizing contribute to the savings. On average, in-
place resizing contributes with 75–80% of the savings, while
per-way resizing contributes with 25–20% of the savings.

D. Why Reducing the Page Table Size Matters

The reduction in page table size attained by ME-HPT may
look unremarkable in terms of absolute Mbytes. However, such
reduction helps decrease the maximum size of the contiguous
memory allocation needed for the page tables. The reason is
that it helps the L2P table work better and enables the use of
smaller contiguous chunks.

Specifically, Section VII-E4 will show that, under ME-HPT
without THP, GUPS and SysBench use 192 L2P entries each.
Each of these entries points to a 1 MB chunk, as can be
deduced from Figure 8. Without the two optimizations that
reduce HPT size (in-place resizing and per-way resizing), the
page tables of these applications would need 96 Mbytes more
memory (Figure 10). That would bring the total number of L2P
entries needed to 192 + 96 = 288 entries. Unfortunately, this
amount would overflow the capacity of the L2P. As shown in
Figure 6, L2P’s capacity for a given page size is 192 entries—
i.e., 64 entries per page size (thanks to stealing) times 3 ways.
As a result, we would have to use the next bigger chunk size.
This would require the allocation of larger contiguous memory
chunks—in our case, 8MB chunks as shown in Table III.
Overall, thanks to the two optimizations that reduce HPT size,
the maximum contiguous memory allocation needed by GUPS
and SysBench reduces from 8MB to 1MB.

Note that although Table I shows that the maximum contigu-
ous allocation for GUPS and Sysbench under ECPT no THP
is 64MB, these applications need, per way, a total of 64MB
+ 32MB = 96MB of page table memory under ECPT when
resizing happens. This is why, without our optimizations, an
L2P pointing to 64 1MB chunks cannot map the whole HPT
way.

It can be shown that, for the MUMmer application under
ME-HPT without THP, with our reduced total HPT size, the
L2P table points to multiple 8KB chunks in two ways, and to
one 1MB chunk in the other way. Without our space-reducing
optimizations, all ways point to two 1MB chunks. Again, the
L2P table works better with our reduced total HPT size.

E. ME-HPT Characterization

We now characterize different aspects of ME-HPT.
1) Resizing Operations: Figure 11 shows the number of

upsizing operations per way in ME-HPT per application for
4KB pages, without and with THP. Each way starts with 8KB,
and every upsizing doubles the size of one way only. There are
no downsizes. On average, ways 0, 1, and 2 are upsized 10.6,
10.5, and 9.9 times without THP. Our algorithm load-balances
the upsizes across the ways. The highest number of upsizes
per way is 13 for GUPS and SysBench without THP. GUPS
and SysBench with THP never upsize their 4KB ME-HPTs.
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Fig. 11: Number of upsizing operations per way in the ME-
HPT for 4KB pages, without and with THP.

We also characterize the ME-HPTs for 2MB pages. The
upsizing operations occur only in GUPS and SysBench with
THP. They both have 5 upsizing events per way. There is no
upsizing event for the ME-HPTs with 1GB pages.

Most of the upsizes happen during the warm-up phase.
During steady state, we observe, on average, only 1.8 and 1.6
upsizes per application without and with THP, respectively.
For all the applications, there is at most one chunk size switch
(from 8KB to 1MB) throughout the whole execution, and thus
only one out-of-place resize.

2) Effectiveness of Per-Way Resizing: Figure 12 shows the
final size of each of the ways of ME-HPT for 4KB pages. Not
all the ways of ME-HPT have the same size. This confirms
the effectiveness of per-way resizing.
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Fig. 12: Size of each of the ways of ME-HPT for 4KB pages.

Without THP, GUPS and SysBench allocate the largest ME-
HPTs: 64MB per way. On the other hand, some applications
require substantially smaller ME-HPTs—e.g., 0.5MB for most
of the ways in MUMmer. We also observe that enabling THP
does not necessarily lead to smaller ME-HPTs. The reason is
that, even with THP, some applications do not use huge pages,
and most of the ME-HPT entries for 4KB pages are still used.



For the applications that heavily utilize huge pages with THP
(GUPS and SysBench), the size of ME-HPTs for 4KB pages
retains the initial, smallest size (8KB).

3) Data Movement Reduction: Intuitively, ME-HPT’s in-
place resizing (Section IV-C) should reduce the number of
page table entries moved in an HPT upsize by 50% for each
HPT way. This is because about 50% of the entries should
remain in place. Figure 13 shows the actual average fraction
of page table entries moved in an upsize of the 4KB page
tables for each application. As shown in the figure, on average,
the measured fraction is close to the expected 0.5. GUPS
and SysBench with THP do not have upsizings for the 4KB
page tables, and are not included in the average. Hence, in-
place resizing provides savings in data movement and reduces
the number of memory accesses. This results in improved
bandwidth and reduced energy consumption.
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Fig. 13: Fraction of page table entries moved in an upsize of
the 4KB page tables with ME-HPT.

4) Number of L2P Table Entries Used: The L2P table has
32 entries × 3 page sizes × 3 ways = 288 entries for all
page sizes (Section V-A). Most applications use only a small
fraction of these entries. Figure 14 shows the actual number of
entries that each application uses, without and with THP. The
number ranges from 11 (TC) to 195 (MUMmer). On average,
only 52.5 entries are utilized.
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Fig. 14: Number of L2P table entries used per application.

5) Benefits for Small-Size Applications: For applications
that only need a small page table, ME-HPT’s use of variable-
sized chunks is very beneficial. To see this effect, we consider
our eight graph applications and reduce their input graph to
1K, 10K, and 100K nodes—rather than the standard 1000K
nodes. Figure 15 compares the size of an HPT way for 4KB
pages for two ME-HPT designs: one that uses only 1MB
chunks (ME-HPT1MB) and the default one that uses both 8KB
and 1MB chunks (ME-HPT1MB+8KB). The data corresponds
to the average of all the graph applications. Note that using

THP or not does not make a difference for these graph
applications due to their irregular memory access patterns.
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Fig. 15: Average size of an HPT way for 4KB pages for: ME-
HPT with only 1MB chunks (ME-HPT1MB) and ME-HPT
with both 8KB and 1MB chunks (ME-HPT1MB+8KB).

For graphs with 100K nodes, the average HPT way needs
nearly 1MB and, therefore, both designs use the same memory.
However, for graphs with 10K and 1K nodes, the average HPT
way only needs about 128KB and 16KB, respectively. As a
result, the ME-HPT1MB+8KB design can use 8KB chunks
and only allocate as much memory as it is needed. On the
other hand, the ME-HPT1MB can only allocate 1MB at a time,
wasting substantial memory and reducing performance.

6) Cuckoo Re-Insertions: Figure 16 shows, for our default
ME-HPT design, the distribution of the average number of
cuckoo re-insertions due to conflicts after an insertion or a
reshash. We can see that, with 0.64 probability, no re-insertion
is necessary. On average, ME-HPT requires 0.7 re-insertions
per insertion or reshash. Even if ME-HPT cannot completely
hide the few cycles of an L2P table access in a re-insertion,
the aggregate overhead visible to the application is negligible.
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Fig. 16: Number of cuckoo re-insertions per ME-HPT insertion
or reshash.

VIII. APPLICATION OF DESIGN TO OTHER PROBLEMS

The hashing optimizations introduced in this paper are
generically applicable to many of today’s hash table designs
and use cases, beyond HPTs. They are applicable to various
multi-way and set-associative hash table designs, and can
benefit use cases where resizing is beneficial and memory
efficiency, in terms of contiguity or total memory, is desired.
Scalable Secure Directories. Directories are set-associative
hardware structures for cache coherence [25]. Hash-based
directory design has been proposed to develop scalable, secure
directories with high effective associativity [28], [87]. For ex-
ample, SecDir [87] proposes per-core private directories using
cuckoo hashing, in a similar vein as per-process HPTs. Effi-
cient resizing techniques are useful for hash-based directory



designs. Our in-place resizing and per-way resizing techniques
can be directly applied to directory designs. Further, directories
can be disaggregated with one level of indirection using our
L2P table technique. The latency of the L2P table access may
potentially be hidden with the access to a large last-level cache.

Memory Indexing. Hash tables are commonly used to imple-
ment the memory indices of databases, file systems, and other
storage systems for both DRAM and persistent memory [22],
[23], [50], [56], [61], [63], [86], [91]. Dynamic resizing
is a key operation for memory indices, whose sizes need
to be constantly adjusted based on the workloads. Most of
the existing hash-based memory indices perform out-of-place
resizing, which is expensive in both memory use and data
movement. The ME-HPT design supports in-place resizing
and can be applied to memory indices to reduce contiguity
requirements. Recently, a scheme called Level Hashing [20],
[91] has been proposed that supports in-place resizing for
persistent memory indices. We compare ME-HPT hashing to
level hashing in Section IX.

Key-Value Stores. Hash tables are the key building blocks
of key-value stores, which essentially provide a hash-table
interface [6], [8], [16], [27], [43], [51], [53], [54], [80],
[86], [89]. The ideas developed in ME-HPTs can be applied
to many existing key-value stores, which require dynamic
resizing—in many use cases, one cannot know the proper size
of the key-value store in advance, since no fixed-size suits
all system configurations and workloads, and the workloads
may change at runtime. Recently, hardware-assisted key-value
stores have been designed to further accelerate key-value store
performance [48], [52], [55], [89], [90]. The ME-HPT designs
can be integrated in hardware for key-value stores to improve
their memory efficiency.

IX. RELATED WORK

TLB Design. A large body of research has focused on improv-
ing TLB design [10], [14], [19], [21], [47], [68]–[70], [78].
Pham et al. [69] exploit the fact that contiguous virtual pages
can be mapped to contiguous physical pages and, thus, TLB
reach can by increased by coalescing adjacent entries. Guided
by the same motivation, Karakostas et al. [47] introduced
Redundant Memory Mappings to translate a range of virtually
and physically contiguous pages with a single range table
entry. As shown in this paper, creating very large contiguous
physical address spaces in fragmented servers is hard.

Researchers also proposed schemes that use large in-
memory TLBs, such as POM-TLB [75] and CSALT [59].
These schemes can eliminate a significant portion of page table
walks. However, their effectiveness depends on the prediction
accuracy. Also, an L2 TLB miss may be propagated to the
in-DRAM TLB and, on a miss, still require a page walk.

Huge Pages. Huge pages can reduce the penalty of expensive
page walks by reducing the number of page table levels
and increasing TLB reach. However, the overheads of huge
pages often exceed their benefits. Hence, researchers have
proposed numerous schemes to improve the efficiency of

huge pages [21], [30], [31], [34], [49], [62], [65]–[67], [71],
[73], [82], [84]. Cox et al. [21] proposed MIX TLBs that
concurrently support all page sizes by exploiting huge page
allocation patterns. Panwar et al. [65] presented HawkEye, an
OS support to reduce kernel overheads of huge pages. Guo
et al. [34] developed a management policy to break a large
page into many smaller ones and to combine small pages into
a large page based on the available memory and page access
patterns.

Other. To improve page walk performance, researchers have
used standard architecture techniques such as prefetching [15],
[46], [76] and caching [9], [12], [13]. Bhattacharjee et al. [15]
developed Inter-Core Cooperative TLB prefetchers to exploit
common TLB miss patterns among cores. Barr et al. [9]
presented an extensive design space of page walk cache
organizations. The DIY architecture [3] asked applications
to manage address translation. Other work proposed direct
segments [11], [29] and devirtualized memory [35].

Level Hashing. To our knowledge, Level Hashing [20], [91]
is the only hashing scheme that supports a form of in-place
resizing. However, it is specialized for non-volatile memory
and, therefore, focuses on optimizing writes. It trades more
memory accesses (4 per lookup) for less entry moves during
resizing (only 1/3 of the old table entries are moved). In
comparison, our in-place resizing reduces the moves to 50%
with no additional memory references per lookup. Importantly,
our algorithm is not specific to write-intensive workloads
and is generically applicable to many existing hash table
designs. In particular, it applies to page tables, which should be
optimized for read-intensive accesses. Moreover, unlike level
hashing, in an upsize, ME-HPT does not need to de-allocate
part of the old table—the old table becomes a part of the new
table. De-allocations tend to cause fragmentation.

X. CONCLUSION

A limitation of HPTs is their apparent need for substan-
tial contiguous physical memory. This paper addressed this
limitation with Memory Efficient HPTs (ME-HPTs), which
introduces four new techniques that, directly or indirectly,
minimize the contiguous physical memory needed by HPTs.
These techniques are the L2P table, dynamically-changing
chunk sizes, in-place HPT resizing and per-way resizing.
Compared to state-of-the-art HPTs, ME-HPTs: (i) reduced
the contiguous memory allocation needs by 92% on average,
and (ii) improved the performance by 8.9% on average. For
two workloads, the contiguous memory needs decreased from
64MB to 1MB. Also, compared to state-of-the-art radix-tree
page tables, ME-HPTs sped-up the workloads by an average
of 1.23× (without huge pages) and 1.28× (with huge pages).
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J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full
System Simulation Platform,” IEEE Computer, 2002.

[59] Y. Marathe, N. Gulur, J. H. Ryoo, S. Song, and L. K. John, “CSALT:
Context Switch Aware Large TLB,” in Proceedings of the 50th
IEEE/ACM International Symposium on Microarchitecture (MICRO-50),
2017.

[60] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “GraphBIG: Un-
derstanding Graph Computing in the Context of Industrial Solutions,” in
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’15), 2015.

[61] M. Nam, H. Cha, Y. Choi, S. H. Noh, and B. Nam, “Write-Optimized
Dynamic Hashing for Persistent Memory,” in Proceedings of 17th
USENIX Conference on File and Storage Technologies (FAST’19),

2019. [Online]. Available: https://www.usenix.org/conference/fast19/
presentation/nam

[62] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, Transparent
Operating System Support for Superpages,” in Proceedings of the 5th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI’02), 2002.

[63] F. Nawab, J. Izraelevitz, T. Kelly, C. B. Morrey, D. Chakrabarti, and
M. Scott, “Dalı́: A Periodically Persistent Hash Map,” in International
Symposium on Distributed Computing, 2017.

[64] R. Pagh and F. F. Rodler, “Cuckoo Hashing,” Journal of Algorithms,
vol. 51, no. 2, 2004.

[65] A. Panwar, S. Bansal, and K. Gopinath, “HawkEye: Efficient Fine-
grained OS Support for Huge Pages,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’19), 2019.

[66] A. Panwar, A. Prasad, and K. Gopinath, “Making Huge Pages Actually
Useful,” in Proceedings of the 23rd International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS’18), 2018.

[67] M.-M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos,
“Prediction-Based Superpage-Friendly TLB Designs,” in Proceedings
of the 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA’15), 2015.

[68] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid TLB Coalesc-
ing: Improving TLB Translation Coverage under Diverse Fragmented
Memory Allocations,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA’17), 2017.

[69] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing TLB
Reach by Exploiting Clustering in Page Translations,” in Proceedings
of the 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA’14), 2014.

[70] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT:
Coalesced Large-Reach TLBs,” in Proceedings of the 45th IEEE/ACM
International Symposium on Microarchitecture (MICRO-45), 2012.
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