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Abstract
In microservice environments, users size their virtual machines
(VMs) for peak loads, leaving cores idle much of the time. To im-
prove core utilization and overall throughput, it is instructive to con-
sider a recently-introduced software technique for environments
with relatively long-running monolithic applications: Core Harvest-
ing. With this technique, Harvest VMs running batch applications
temporarily steal idle cores allocated by Primary VMs running
latency-critical applications, and return them on demand. Unfor-
tunately, re-assigning cores across VMs has substantial overhead,
resulting from hypervisor calls, context switching, and flushing
TLBs/caches. While such overhead is acceptable in monolithic ap-
plication environments, it would be prohibitive in environments
with sub-millisecond microservices.

To address this problem, this paper proposes, for the first time,
an architecture for core harvesting in hardware. The architecture,
called HardHarvest, targets microservices. It aims to: 1) maximize
core utilization, 2) minimize impact on Primary VM tail latency, and
3) boost Harvest VM throughput. HardHarvest eliminates software
overheads by using in-hardware request scheduling and partition-
ing TLBs/caches with a smart replacement algorithm. On average,
compared to state-of-the-art software core harvesting, HardHarvest
increases core utilization by 1.5×, increases Harvest VM throughput
by 1.8×, and reduces Primary VM tail latency by 6.0×.
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1 Introduction
Cloud computing is experiencing a paradigm change, as many appli-
cations shift from large monolithic deployments to compositions of
lightweight, loosely-coupled microservices [66]. Each microservice
is implemented and deployed separately, and executes a portion
of the application’s logic. This composable software design simpli-
fies programming. Moreover, it allows each service to be shared
among different applications, while being scaled independently of
other services. As a result, microservices are popular in compa-
nies such as Amazon [62], Netflix [83], Alibaba [48], Twitter [79],
Uber [10, 80, 95], Meta [32, 72], and Google [27].

Microservice instances are Virtual Machines (VMs) or containers
that serve microservice invocations (i.e., requests). An instance is
created with a specified number of cores and amount of memory,
and serves requests for that microservice. Although requests are
short-running (typically, hundreds of 𝜇seconds), instances are long-
lived: they can be up and serve requests for days [32].

The frequency of request arrival for a given microservice varies
substantially with time, and exhibits bursty patterns. To attain
good performance even at peak loads, users typically provision
instances to handle these infrequent load spikes. As a consequence,
instances are typically greatly overprovisioned—e.g., in number of
cores needed. The result is that, in microservice environments,
allocated but idle cores are a major waste [48]. As an example, using
open-source production-level microservice traces fromAlibaba [48],
we see that 50% and 90% of microservice instances have an average
core utilization lower than 16.1% and 40.7%, respectively.

To combat resource inefficiency under general loads, providers
have implemented various techniques in their software stacks [3, 4,
26, 54, 55]. Amazon allows a Spot VM to seize unallocated cores if
needed [3]. Further, Microsoft introduced a new type of VM called
Harvest VM [5, 22, 88, 92] that can dynamically grow by harvesting
cores. In such environments, there are two types of VMs: Primary
and Harvest VMs. Primary VMs run latency-critical applications,
need predictable high performance, and are created with a specified
number of cores; Harvest VMs run batch applications, have loose
performance requirements, can tolerate resource fluctuations, and
are charged at a lower cost. Harvest VMs dynamically grow by
harvesting unallocated cores in the server [5] or, additionally, by
taking temporarily idle cores allocated by a Primary VM [88]. When
the Primary VM needs its cores, it reclaims them back.

In practice, re-assigning a core from one VM to another has high
overhead. First, a scheduler must perform two hypervisor calls:
one to detach the core from the first VM, and the other to attach it
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to the second VM. Second, an expensive cross-VM context switch
is performed. In addition, the state left in the re-assigned core’s
private caches and TLBs is a potential source of leakage. Specifically,
a malicious tenant could force conflicts in these structures and learn
information from an earlier tenant such as cryptographic keys [84].
Hence, the core’s private caches and TLBs are typically flushed
and invalidated during the reassignment [7, 9, 24, 71, 82, 84, 85, 94].
Unfortunately, flushing and invalidating private caches and TLBs,
and the resulting cold-cache and cold-TLB restart add substantial
overhead. Overall, we find that the sum of all these overheads can
easily exceed 5ms. These overheads are particularly insidious when
a core is reclaimed by its owner Primary VM, as they directly impact
the response time of latency-critical applications.

The Harvest VM concept has been applied only to setups where
Primary VMs run relatively long monolithic applications [5, 22, 88,
92]. In such applications, a reassigment overhead of a few ms can
be considered negligible. However, in microservice environments,
it is not tolerable to suffer a few-ms reassignment overhead every
time that a 100-𝜇s microservice request is received and needs to
execute. The situation is even more challenging in an aggressive
environment that can re-assign a Primary VM idle core not just
when the core has terminated a request execution, but also when
the execution is stalled on I/O—as such events happen frequently.

To address this problem, this paper proposes the first architec-
ture that supports core harvesting in hardware, called HardHarvest.
The goal is three-fold: attain high core utilization, introduce mini-
mal or no increase in the tail latency of Primary VM microservice
requests, and deliver substantial increases in the throughput of
batch workloads in Harvest VMs. To accomplish these goals, Hard-
Harvest targets the two main overheads present in software-based
core harvesting.

The first overhead is the core re-assignment. To minimize it,
HardHarvest adds hardware queues of microservice requests. A
microservice request arrives as a network packet that contains the
name of the microservice function to invoke and the input data
required by that function. Themessage payload is deposited into the
LLC and a pointer to the payload is stored in a hardware request
queue. A core is re-assigned from one VM to another by being
allowed to dequeue requests from the new VM’s hardware queue
when the original queue is empty. There is no need for detach/attach
system calls and the context switch is accelerated in hardware.

The second overhead is flushing and invalidating TLBs and pri-
vate caches on core re-assignment, and the resulting cold restart.
HardHarvest leverages the fact that microservices typically have
small working sets, and partitions TLBs and private caches into two
regions: Harvest and Non-Harvest regions. When a core executes a
Primary VM, it can use both regions; when it executes a Harvest VM,
it is allowed to use only the Harvest region. When a core transitions
between VMs, only the Harvest region is flushed and invalidated;
the Non-Harvest region preserves the Primary VM’s state during
harvesting. In addition, HardHarvest enhances the effectiveness of
such partitioning with a smart cache/TLB replacement algorithm
that retains important state in the Non-Harvest region.

We evaluate HardHarvest with full-system simulations of an
8-server cluster, where each server has a 36-core IceLake-like pro-
cessor [35]. Our evaluation shows that HardHarvest is very effective.
On average, compared to state-of-the-art software core harvesting,

HardHarvest increases core utilization by 1.5× and Harvest VM
throughput by 1.8×, while reducing Primary VM tail latency by
6.0×. Compared to a system without core harvesting, HardHarvest
increases core utilization by 3.4× and Harvest VM throughput by
3.1×, without increasing the tail latency of Primary VMs.

This paper’s contributions are as follows:
• A characterization of the opportunities of supporting hardware-
based core harvesting in microservice environments.
• HardHarvest, the first architecture for hardware core harvesting.
• An evaluation of HardHarvest for microservice environments,
comparing it to state-of-the-art core harvesting and no harvesting.

2 Background
1. Microservice Applications. Figure 1 shows an example of a
microservice-based application (ComposePost) from the DeathStar-
Bench suite [23]. Each service, e.g., Text or SGraph, performs its
dedicated functionality, communicates with other services, and can
scale independently of other services.
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Figure 1: ComposePostmicroservice-based application. Blue
boxes are microservices. White and patterned boxes are fron-
tend and backend helper applications, respectively.

Microservices make software development and application scal-
ing easier, but introduce numerous overheads. Thus, a large body
of work has optimized different aspects of microservice environ-
ments [11, 33, 38, 58, 59, 63, 73, 76]. Importantly, the application
decomposition places tight latency objectives on individual ser-
vices [73], making the tail latency a key performance metric [16].
Any overheads, such as request queuing, that are considered negli-
gible for large monolithic applications, can significantly degrade
the tail latency of microservices.

Requests for a given microservice are served by one or more
Instances present as separate VMs or containers. We focus on VMs
due to their current prevalence in the cloud. When created, a VM
is assigned a certain number of cores and amount of memory that
it can use. Cloud providers use these resource limits to pack the
VMs on servers. To accommodate the peak load, users typically
overprovision VMs, leaving resources such as cores underutilized
throughout the majority of the VM lifetime. Even when there is
substantial load for the microservice, requests may not fully uti-
lize cores, as cores often stall on synchronous RPCs to read/write
to/from remote storage, or to invoke other microservices.
2. Resource Harvesting in the Cloud. Traditionally, a good way
to improve server utilization in datacenters has been to co-locate
batch workloads with user-facing applications [47, 50]. Batch work-
loads, such as machine learning training [86] or in-background
data processing [92], can then use resources left idle by user-facing
applications to improve their throughput. Recently, the same ap-
proach has been used for VMs in the cloud, where software support
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allows VMs running batch applications to harvest cores [5, 88, 92],
memory [22], and storage [93].

Core harvesting has received the most attention, and has been
explored through a new type of VM called Harvest VM [5, 88, 92].
Harvest VMs dynamically change their size by temporarily stealing
idle cores. In the initial designs, Harvest VMs could steal only cores
that were not allocated to any latency-critical VM (i.e., PrimaryVM),
and had to return the cores once a new Primary VMwas created [5].
State-of-the-art harvesting schemes, such as SmartHarvest [88],
further improve core utilization by temporarily stealing idle cores
allocated to Primary VMs. The system monitors the core utilization
of all Primary VMs in the server. Then, based on the predictions
of core utilization in the near future, the system may decide to re-
assign some cores to the Harvest VM. When a Primary VM needs
the cores back, SmartHarvest returns the borrowed cores. Since
current approaches to re-assign a core from one VM to another
involve substantial software overheads, SmartHarvest keeps a few
idle cores on stand-by in an emergency buffer. If needed, these cores
can be reclaimed by Primary VMs.

The Harvest VM concept has been applied only to environments
with long-running monolithic applications in Primary VMs [5, 22,
88, 92]. For these applications, the overhead of core re-assignment
may be tolerable. For microservices, however, which typically run
for hundreds of 𝜇seconds, we will see that the core re-assignment
overhead is too high. The situation is even more challenging in
a microservice environment where idle Primary VM cores can
be stolen not just after a core has terminated the execution of a
microservice request, but also when a core has stalled execution
due to I/O—which is frequent.
3. Microarchitecture Structure Flush and Invalidation on
Core Re-Assignment. In multi-tenant clouds, when a core is reas-
signed from one VM to another, the state left in the core’s private
microarchitectural structures such as caches and TLBs is a poten-
tial source of information leakage. The new VM being scheduled
could observe private state that the old VM being preempted has
left in these structures. Consequently, structures such as private
caches and TLBs are flushed and invalidated when a core switches
from one VM to another. This is both described in research papers
(e.g., [7, 9, 24, 71, 82, 94]) and documented in literature from cloud
providers. For example, a 2024 blog from Microsoft production [85]
and a 2024 paper from Microsoft Research [84] say that they use
microarchitecture state flushing and scrubbing in their production
systems when a core moves from one VM to another.

Following these ideas, in this paper: 1) we partition the shared
last-level cache into one partition per VM and 2) we require that,
on a core context switch from one VM to another, all the levels of
private caches and TLBs in the core are flushed and invalidated.

3 Motivation for In-Hardware Core Harvesting
To understand the opportunities of hardware-supported core har-
vesting for microservices, we analyze a large set of applications:
production-level traces of Alibaba’s microservices [48], and Death-
StarBench [23] microservices (acting as latency-sensitive workloads
running in Primary VMs). The traces provide a time series of av-
erage, maximum, and minimum core utilization of microservice
instances. We run the microservices on an Intel IceLake server with

36 2.4GHz cores, 256GB of DRAM, and an LLC with 1.5MB per core.
The server runs Ubuntu 22.04 and the KVM hypervisor. To general-
ize the insights, we also run the microservices as Docker containers
and observe similar results. We identify several opportunities for
hardware-based core harvesting.
Opportunity: Cores allocated to microservice instances in
the cloud are heavily underutilized. When a user deploys a mi-
croservice instance in the cloud, they specify the resources needed
for the instance, including the number of cores [2, 25, 56]. The
instance is typically sized to guarantee it can handle the peak load,
leading to low average utilization [12, 48, 87, 88]. Figure 2 shows
the distribution of the average and maximum core utilization of
Alibaba’s microservice instances. The utilization is low: half of the
instances have an average core utilization lower than 16.1%, and
90% of instances have a maximum core utilization lower than 40.7%.
These numbers represent great opportunities for harvesting.
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Figure 2: Core utilization of Alibaba’s microservice instances.

Opportunity: If the overhead of hardware core harvesting is
low, significant performance gains can be attained.

To understand this opportunity, we make three observations.
• There are large fluctuations in a VM’s core utilization or
load over time. We analyze Alibaba’s traces, which provide a
granularity of 30-second measurements. Figure 3 shows the core
utilization of a representative Alibaba VM over time.
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Figure 3: Core utilization of an Alibaba microservice.

While core utilization is often low, we observe that it can in-
crease due to bursts of requests. Let us assume that these VMs are
Primary ones. During the low-load periods, some of their cores
can be harvested by Harvest VMs. Then, when the load spikes,
the harvested cores must be quickly returned to Primary VMs to
prevent increases in the tail latency of Primary VM requests.

In current systems, there are two main sources of overhead to
move a core between VMs: 1) software overhead of invoking the
hypervisor to reassign the core from one VM to another, and 2)
flushing and invalidating the caches of the reassigned core (so
that no cache state leaks across a VM transition) and subsequent
cold-cache re-start of the execution.
• Core re-assignment via hypervisor is costly. In state-of-the-
art software-based harvesting [88], a user-space agent monitors
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the utilization of all the cores in Primary VMs and, based on the
utilization, may decide to migrate a core to a Harvest VM. To do so,
it performs a hypervisor call to detach the core from the first VM
and another to attach it to the second VM, using cgroup tools. With
the KVM hypervisor, moving a core across VMs takes ≈5ms. Half
of this time is spent on detaching/attaching the core, and half on
loading the new VM’s context. The state-of-the-art SmartHarvest
design [88] reduces the cost of detaching/attaching the core to 100s
of 𝜇s (which is about the execution time of a microservice).

We quantify the impact of core reassignment on the tail latency
of microservices. We run DeathStarBench microservices [23] on our
server with 4-core VMs, inducing the same core utilization as the
one in the Alibaba traces. We detach an idle core from a Primary VM
and attach it to a Harvest VM. Later, when the Primary VM receives
a request, we move the core back. In our experiments, the Harvest
VM is always idle. Hence, the caches of the reassigned core are
not flushed/invalidated. Figure 4 shows the tail latency of microser-
vices in Primary VMs without (No-Move) and with the overhead of
core reassignment. We execute the system with the open-source
KVM hypervisor [40] and move a core from the Primary VM either
on termination of a request invocation only (KVM-Term), or on
both termination and at every blocking I/O call in the invocation
(KVM-Block). In either case, we move the core from a Primary to the
Harvest VM only if the Primary VM has no other requests ready to
run. We observe an average of 11 and 36 core reassignments per sec-
ond with KVM-Term and KVM-Block, respectively. We also emulate
the optimized reassignment latencies reported in SmartHarvest [88]
(Opt-Term and Opt-Block).
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Figure 4: P99 tail latency of microservices in Primary VMs
with the hypervisor overheads of core reassignment.

We see that core reassignment with KVM-Term, KVM-Block, Opt-
Term, and Opt-Block increase the P99 tail latency substantially: by
3.2×, 3.8×, 2.7×, and 3.1×, respectively, on average. It can be shown
that the overheads increase even further with higher numbers
of cores and VMs, and with higher loads. Since these overheads
are high, SmartHarvest keeps some idle cores on stand-by in an
“emergency” buffer, resulting in even lower core utilization. These
cores are reclaimed by Primary VMs when they receive new work.
• Cache flush and invalidation on core re-assignment and
subsequent cold-cache restart are expensive. As discussed in
Section 2.3, we flush and invalidate a core’s private caches and TLBs
when the core is reassigned from one VM to another. Unfortunately,
current processors do not have an efficient way to do it, resulting
in high overheads. For example, Intel’s wbinvd [20] flushes and
invalidates the whole cache hierarchy of a given core, and takes
300–500𝜇s. Further, Intel’s clflush flushes only one cache line, so
one needs to execute it many times. In addition, as an invocation
starts on a re-assigned core, it finds cold caches and TLBs.

We again consider two cases: a conservative design where an
idle core is taken from a Primary VM only when it has finished
executing a request, and an aggressive design where an idle core
is also taken when it is blocked on I/O. We note that starting (or
restarting) a request on a cold cache and TLB is costly. Even threads
that handle different invocations of the same microservice share a
large fraction of their memory footprint.

Figure 5 quantifies the impact of flushing and invalidating caches
and TLBs (via the wbinvd instruction) and restarting with cold
caches and TLBs. The figure shows the tail latency of microservices
in Primary VMs without flushing, with flushing in the conservative
design (Flush-Term), and with flushing in the aggressive design
(Flush-Block). With wbinvd, the processor does not wait for the
external caches to complete their write-back and invalidation oper-
ations. It only waits for internal caches (L1/L2) to be written-back
and invalidated. As we use the existing wbinvd instruction, these
experiments do not include the time it takes to write back and in-
validate external caches. Hence, this implementation is not safe. In
our evaluation (Section 6), when we simulate this architecture, we
place a fence after the wbinvd instruction. The figure has two extra
bars (Harvest-Term and Harvest-Block) which, additionally, add the
overhead of core re-assignment using the optimized hypervisor
software shown in Figure 4. These two extra bars represent the
current true cost of core re-assignment [88].
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Figure 5: P99 tail latency of microservices in Primary VMs
with cache/TLB flushing and, for the last two bars, both
cache/TLB flushing and hypervisor core reassignment.

On average, cache/TLB flushing increases the P99 tail latency
by 2.7× (Flush-Term) and 3.3× (Flush-Block). Further, if we add the
hypervisor reassignment overhead, the tail latencies of Harvest-
Term and Harvest-Block are 3.6× and 4.2× higher, respectively, than
the no-flush design. These are the substantial costs that hardware-
supported harvesting may help minimize.

Putting it all together, Figure 6 shows the execution time of a sin-
gle service request in steady state without and with core harvesting.
The core harvesting environment includes the optimized hypervi-
sor core reassignment design in [88] and cache/TLB flushing and
invalidation. The figure shows two bars per service: one with no
harvesting (left bar) and one with harvesting (right bar). The latter
is broken down into three components: hypervisor reassignment
of cores (Core Reassign), flush/invalidation of the caches and TLBs
(Flush/Inval), and execution of the request (Execution). We see that,
on average, a request takes 1.9× longer with core harvesting. In
addition to the core reassignment and flush/invalidation overheads,
the execution time itself under core harvesting takes 1.2× longer
than before due to using cold microarchitectural structures.
Opportunity: Microservice invocations have relatively small
working sets. In an environment with frequent cache and TLB
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Figure 6: Execution time of a single service request in steady
state without core harvesting (left bar) and with core harvest-
ing (right bar). The latter is broken down into its components.

flushing and invalidation, it may be reasonable to reserve a section
of these structures for the Primary VM, and not flush this section.
But, this approach is only plausible if microservice invocations
have small working sets. In practice, this is the case. We assess the
working set sizes of DeathStarBench microservices in two ways.
First, we configure our server with a smaller LLC and do not observe
any performance change. Specifically, our IceLake server has a
54MB LLC organized in 12 ways. We use Intel CAT [34] to partition
the LLC and allow a microservice to use either the full LLC, 3/4,
1/2, or 1/4 of the LLC. We observe that, even with a 1/4 of the LLC,
the tail latency of microservices does not degrade more than 1%.

Second, we simulate a server where all caches and TLBs are
smaller: we model the server with the full caches and TLBs, and
then we reduce the number of ways in all structures to 75%, 50%,
and 25%, while keeping the number of sets constant. We also model
the performance of a simulated environment with infinite caches
and TLBs. We use the SST simulator [67] with QEMU [70], and
validate the simulation accuracy by calibrating the results with the
real system, with and without LLC partitioning. Figure 7 shows the
tail latency of microservices when running with different sizes of
all caches and TLBs. All microservices see a very small impact even
when operating with 1/2 of the whole cache/TLB hierarchy.
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Figure 7: Tail latency ofmicroservice invocations on a system
with a fraction of the whole cache and TLB hierarchy.

4 HardHarvest: Core Harvesting in Hardware
Based on the previous observations, we propose HardHarvest, the
first processor micro-architecture that delivers high-performance
core harvesting by supporting it in hardware. HardHarvest allows
Harvest VMs to steal idle cores from Primary VMs with very low
overhead, and return them on demand with minimal impact on
the tail latency of Primary VMs. In this way, HardHarvest simul-
taneously enables high utilization of cores, high throughput for
Harvest VMs, and minimal impact on Primary VMs. HardHarvest
targets the two main sources of overhead in core harvesting: (i)
core reassignment and (ii) cache and TLB flush/invalidation and
cold restart. We present how we address each source in turn.

4.1 Minimizing Core Reassignment Overhead
4.1.1 Main Idea of the Proposed Solution

To minimize the latency of core reassignment, we propose to
support part of its operation in hardware. Specifically, we design
hardware schedulers that schedule requests for VMs. The sched-
ulers optimize core migration between VMs. Further, cores dequeue
requests from their own VM’s queue by using a low-overhead de-
queue instruction. When a core cannot find work, it is automatically
reassigned to a Harvest VM by simply allowing it to dequeue a job
from that VM’s queue. There is no need to issue (de)attach system
calls as scheduling is done in hardware.

A conventional detach operation involves: 1) issuing a hyper-
visor call (switching from user-space to privileged mode) [44], 2)
acquiring a lock [42], and 3) sending an interrupt to the affected
core [43]. An attach operation follows the same steps. In each case,
HardHarvest’s hardware avoids the first two software overheads.
First, it bypasses the hypervisor and directly re-assigns the cores
across VMs in hardware. Second, as hardware schedulers work in a
decentralized manner, there is no need to acquire the global lock.

In addition, when a Primary VM receives a request and all its
cores are busy, if any of its cores is executing a request for a Harvest
VM, an interrupt is sent to one of such cores. That core then saves
the state of its Harvest VM’s request, performs a context switch, and
dequeues the new request from the Primary VM’s queue without
issuing any hypervisor (de)attach system calls.

With this hardware, we estimate that a core re-assignment from
Harvest to Primary VM takes a few 𝜇s. If, in addition, we speed-
up context switching by adding hardware support for saving and
restoring the process state, we estimate that a core re-assignment
takes a few 10s of ns. Recall that a software approach to reassign a
core across VMs takes from a few hundreds of 𝜇s to a few ms.
4.1.2 Detailed Hardware Design

In HardHarvest, a processor has a hardware controller with re-
quest queues. Figure 9 shows the design. There is a single hardware
request queue (RQ) that is dynamically divided into different (log-
ical) subqueues, one for each running VM. To ensure isolation,
VMs cannot access each other’s subqueues. In addition, there are a
number of hardware Queue Managers (each of which can control
a request subqueue) and a number of VM State Register Sets (each
set can store a VM state shared by all the threads of a VM). Such
state includes registers such as the VMCS pointer, CR0, CR3, CR4,
GDTR, LDTR, and IDTR. Each subqueue is given a Queue Manager
and a VM State Register Set.

When a user allocates a VM, they specify the number of cores
to use. Those many cores are then logically bound to the VM. This
is done by setting a core register (MyManager) with the ID of the
Queue Manager in charge of the VM. The relative number of cores
bound to each VM determines the relative fraction of the RQ entries
assigned to each VM’s subqueue. Hence, the sizes of the individual
subqueues may dynamically change as new VMs arrive to the server
and old VMs are removed.

To allow such flexibility, the physical RQ is broken into chunks,
and each VM’s subqueue is composed of one or more chunks. When
a new VM is spawned on a server, it gets a few chunks from the
currently-active VMs. A VM donates one or more chunks from the
tail of its subqueue. If some of the entries in those chunk(s) are
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full, the corresponding entries are moved to a software-based In-
memory Overflow Subqueue for that VM. We discuss this structure
later. Likewise, when a VM leaves the server, its chunks are assigned
to the tails of the subqueues of the remaining VMs.

While a subqueue is logically contiguous, its chunks do not need
to be physically contiguous. Every Queue Manager has an RQ-Map
that maps the logical chunks of a VM’s subqueue to their physical
chunks. Therefore, when a VM’s subqueue sheds a chunk, it simply
invalidates the entry in its RQ-Map; when a VM’s subqueue gets a
new chunk, it inserts a new entry at the tail in its RQ-Map. In our
implementation, the RQ has 32 chunks of 64 entries each. The total
storage of an RQ-Map is 24B, i.e., up to 32 entries with 5 bits for
the physical chunk ID and 1 valid bit.

To enable concurrency, each chunk of the RQ has its own access
port. Since individual chunks are exclusively owned by a given
Queue Manager, different Managers do not contend on such ports.
All 32 chunks can be accessed in parallel.
4.1.3 Request Arrival and Processing

Every VM has its own network address. When the NIC receives
a packet with a request (Figure 8(a) 1 ), it deposits the message
payload in the LLC via DDIO 2 , and reads the message’s desti-
nation VM. Then, it checks a local software table that tells which
Queue Manager (QM) is in charge of which VM. It informs the cor-
responding QM 3 , which stores in its Request Subqueue a pointer
to the request payload 4 . If the Request Subqueue is full, the QM
instead stores the pointer in the In-memory Overflow Subqueue of
its VM. In either case, the request is marked as ready.

A core is bound to a QM through theMyManager register. Cores
have instructions to spin on a Request Subqueue for work, to de-
queue a request, and to inform the Request Subqueue when the

request has been completed or when it is blocked on I/O. Such
instructions access the QM corresponding to the core’sMyManager
register. This QM identifies the Request Subqueue to spin on, the
request to dequeue, the request to remove as completed, and the re-
quest to mark as blocked, respectively. Moreover, each QM knows if
it is managing a Primary or a Harvest VM and, if the former, which
of its bound cores are currently "on loan" executing requests of a
Harvest VM.
4.1.4 Operation of Core Reassignment

As a core bound to a Primary VM spins on the subqueue of its
MyManager QM and there is no request to process (Figure 8(b) 1 ),
the QM forwards the core’s request to a Harvest VM’s QM 2 . A
Harvest VM runs a batch application and is expected to always
have available work. Hence, the Harvest VM’s QM sends a process
to the requesting core 3 , together with the VM State Register Set
associated with the QM. On receiving the message, the requesting
core may have to save the state of its current process (if it was
blocked). It also restores the state of the new Harvest VM process,
loads the VM State Register Set of the new VM that it receives from
the HardHarvest hardware controller, and proceeds to execute the
new process.

To avoid entering the kernel in this case, HardHarvest can use
hardware that automatically saves and restores the process register
state on a context switch. Specifically, the current state is saved in a
special Request Context Memory connected to the on-chip network
4 and the new state is restored from there 5 . This hardware
simply extends prior proposals for in-hardware context switching
across requests [76], to additionally perform a VM context switch.
4.1.5 Reclaiming a Core by a Primary VM

A core is quickly reclaimed by its Primary VM on demand. When
a new network packet arrives at the NIC (Figure 8(c) 1 ) and is
either a new request for a Primary VM or a network response to
a blocked request of a Primary VM, the NIC informs the corre-
sponding Queue Manager (QM) 2 . The QM checks if: (i) none
of its bound cores is idle, and (ii) at least one of its bound cores
is executing a request for a Harvest VM. If so, it interrupts one
such core and passes it the new process and the correct VM State
Register Set 3 . Note that the interrupt is sent in hardware by the
QM of a Primary VM—not by the VM itself. A Primary VM is never
aware that another VM was running on one of its bound cores.
The interrupted core immediately performs a context switch as
described above: it saves the state of the current process 4 , loads
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the new VM State Register Set received from the QM, and restores
the state of the new process belonging to the Primary VM 5 .

As the Harvest VM loses the core, the process that was running
there (i.e., the vCPU) is returned to the queue of the Harvest VM
vCPUs. The Harvest VM’s QM multiplexes its vCPUs onto its re-
maining physical cores (pCPUs), similarly to an over-subscribed
environment. Since Harvest VMs are configured with as many vC-
PUs as there are pCPUs in the server [88], the software running in
the Harvest VM does not require any changes. However, as the Har-
vest VM knows the current number of pCPUs available to it, it can
adapt dynamically, either by reducing parallelism or rescheduling
tasks [88]. Importantly, there is no risk of deadlock from preempted
Harvest VM threads holding locks as those threads will eventu-
ally run on the remaining pCPUs when they are scheduled again,
ensuring forward progress.

Figure 10 summarizes core reclamation. In Figure 10(a), the red
core bound to the Primary VM is currently executing request ID5 of
the Harvest VM, and a new request ID6 of the Primary VM arrives.
In Figure 10(b), the core is interrupted and forced to execute ID6,
leaving ID5 in a ready state for another core to take.
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Figure 10: In-hardware core reassignment between VMs.

When a core running a request for a Primary VM blocks on I/O,
it may be stolen. However, the pointer to the request is kept in the
corresponding Request Subqueue. Later, when the NIC receives the
network response to the blocked request, the NIC informs the QM.
The QM marks the request in the Request Subqueue as ready and
the procedure described above is followed to reclaim the core.

Our HardHarvest design uses FIFO scheduling within a VM.
Future work could explore customized scheduling policies, either
based on application-provided information, or learned by the sys-
tem. For example, the application could identify periodswhen bursts
are expected or when the SLO is likely to be violated frequently.
In response to this, the system could reduce the harvesting aggres-
siveness by, for example, keeping a buffer of idle cores ready for

Primary VM bursts. Alternatively, the system could monitor events
such as when requests spend a very short time blocked on I/O. In
this case, the system could dynamically switch from harvesting on
blocking call to harvesting only on request completion.
4.1.6 The Need for a Hardware Scheduler

HardHarvest uses a hardware scheduler instead of CPU-centric
software scheduling for two reasons. First, a hardware scheduler
allows fast core notification when a Primary VM request enters
the queue, as the QM checks if the core needed by the VM is on-
loan to a Harvest VM and instantly alerts it. In contrast, a software
scheduler would require cores to poll memory locations, lower-
ing throughput by diverting core cycles from application logic to
checking for new requests. Second, a hardware scheduler minimizes
queue contention, eliminating the need for locking mechanisms
when multiple cores access the same subqueue, which software
scheduling requires.

A hardware scheduler can use memory-mapped queues or hard-
ware queues. Memory-mapped queues are inexpensive and flexible.
However, hardware queues have better performance for two rea-
sons. First, dedicating special SRAM queues for incoming requests
reduces the contention between (i) the scheduler and (ii) the cores
and NIC on the cache hierarchy. Indeed, accesses from the hard-
ware scheduler to the special SRAM queues do not compete with
regular cache hierarchy accesses by cores or NIC accesses that
deposit requests using DDIO. Second, hardware queues and their
network can be designed to have low access latency. Hence, in
HardHarvest, we design the RQ (Figure 9) as a dedicated SRAM
hardware queue. However, HardHarvest could be easily integrated
with memory-mapped queues as well.
4.1.7 Limitations of Prior Hardware Queues for Microservices

Prior work has used hardware queues in microservice environ-
ments [76, 96]. However, these designs lack four important supports
that HardHarvest provides. First, they assume that all cores can pick
requests from the same queue, without any security concerns. In a
cloud setup, one must isolate different users. Thus, in HardHarvest,
the RQ is split into per-VM subqueues that are managed by different
hardware Queue Managers (QMs). These QMs operate in parallel
and on distinct subqueues, avoiding any sharing or contention.

Second, prior designs assume non-virtualized environments.
Thus, a request’s state is only the state of a Linux process. However,
cloud workloads run inside sandboxed VMs. Thus, when executing
a request, a core needs to load both request and VM contexts. In
HardHarvest, each QM keeps the VM state in the VM State Register
Set (Figure 9).

Third, prior designs do not have the notion of a Harvest VM
process being pre-emptable by a Primary VM process. In HardHar-
vest, a Harvest VM running on a stolen core may be immediately
preempted when a new request for the owner Primary VM is re-
ceived. The QMs have logic to detect such scenarios and enforce
the reassignment across VMs.

Finally, prior proposals are inflexible in that they work with
fixed-size queues. Instead, in HardHarvest, per-VM subqueues can
dynamically change their size as new VMs are allocated or old
VMs depart the server. Further, each subqueue has a software In-
memory Overflow Subqueue in main memory that holds requests
that overflowed the subqueue.
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4.1.8 Implementation Details
The HardHarvest controller of Figure 9 is a centralized hardware

module in the chip that is accessedwith a dedicated network.We use
a special network for two reasons. First, accesses to the controller
should not compete with the regular workload traffic. Second, the
control network has different needs than the regular network. As it
transfers mostly control messages, and it is latency-, not bandwidth-
sensitive, it has thin links. In our design, we use a tree topology.

Cores communicate only with the QMs and not with the Request
Subqueues. This approach is both secure and avoids data races. The
enqueue, dequeue, and other instructions are user-level instructions
that are embedded in libraries. These instructions are transparent to
the application developers. For example, CompletionQueue::Next
[29] in gRPC and TServerSocket::listen [6] in Thrift are aug-
mented with the HardHarvest dequeue instruction.

The processor chip also includes the special Request Context
Memory where the hardware for fast context switch proposed
by 𝜇Manycore [76] saves and restores the core state in a context
switch. Such memory is connected to the regular NoC. As saving
and restoring is done in hardware, there are no new instructions.

4.2 Cache/TLB Flush/Inval & Cold Restart
4.2.1 TLB and Cache Partitioning

Following existing practice [7, 9, 24, 71, 82, 84, 85, 94], HardHar-
vest would need to flush and invalidate the L1/L2 caches and L1/L2
TLBs of a core when the core is re-assigned across VMs, to ensure
that the structures do not leak information. The LLC does not need
to be flushed because it is partitioned using Intel’s CAT [34]. To
minimize this overhead, HardHarvest uses the fact that microser-
vice invocations have relatively small working sets for both data
and instructions [23, 72]. Specifically, HardHarvest proposes to par-
tition the L1 caches (D and I), L2 cache, L1 TLBs (D and I), and L2
TLB in a way that minimizes the overhead for Primary VMs and
still allows Harvest VMs to attain good performance.

Each of these structures is way-partitioned into one Harvest
Region and one Non-Harvest Region. When a Primary VM runs, it
uses the whole structure; when a Harvest VM runs, it can only use
the harvest region—which may be, e.g., 1/2 or 1/3 of the ways of
the structure. The non-harvest region is inaccessible to the Harvest
VMs, and keeps state of the Primary VM that will be reused when
the core is returned to the Primary VM.

When a core transitions from a Primary to a Harvest VM, the
harvest region is flushed and invalidated. The Harvest VM is not
allowed to start execution until a certain time has elapsed equal to
the longest possible duration of the flush/invalidate operation. This
is done to eliminate a timing side-channel.

When a core transitions from a Harvest to a Primary VM, again
only the harvest region is flushed and invalidated. However, the Pri-
mary VM restarts execution right away when the core is reclaimed,
reusing the data stashed away in the warmed-up non-harvest re-
gion. In the background, the harvest region is flushed and invali-
dated. When the invalidation is completed and the worst-case time
has elapsed to ensure there is no timing side-channel, the empty
ways also become visible to the Primary VM. Hence, flushing and
invalidating the harvest region is not in the critical path.

For a Primary VM, what fraction of the ways in the L1/L2 caches
and TLBs are the harvest region can be a default value or speci-
fied by the software. This information is saved in a HarvestMask
hardware register in the Queue Manager of the VM (Figure 9). Har-
vestMask contains a bit per way for each of the structures, for a total
of 5B. A bit is set if the way is in the harvest region. When a core
is assigned (or re-assigned) to a VM, the system knows whether
the VM is Primary or Harvest, and obtains the VM’s HarvestMask.
Then, before the core starts executing, the HarvestMask is used to
reconfigure the private caches/TLBs in a way similar to CAT [34].
For example, if the core is executing a Harvest VM, the non-harvest
ways of the L1/L2 caches and TLBs are inaccessible to the requests.
Coherence messages such as invalidations are still received for data
in either the harvest or the non-harvest ways, since data is not
remapped. To improve performance, HardHarvest could profile a
workload and recommend an initial non-harvest region size. Then,
the system could transparently learn during execution the best
non-harvest region size by opportunistically trying to change it
and seeing the performance impact.

A Harvest VM such an ML training job could make use of more
space than the harvest region partition. However, HardHarvest is
still attractive to these workloads because, while the harvested cores
have reduced cache capacity, renting them has a lower price—thus
improving cost-efficiency for latency-tolerant applications.
4.2.2 Improving Cache Allocation for Primary VMs

To improve the performance of Primary VMs, HardHarvest tries
to keep in the non-harvest region the state that is most likely to
be reused when a core is reclaimed back by a Primary VM. To un-
derstand what this state is, we consider two types of pages: those
that are shared across different invocations of the same service,
and those that are private to a particular invocation of the service.
Shared pages include program code, libraries, read-only input data
and, generally, data pages that are allocated in a microservice before
forking a process to execute a particular invocation of the microser-
vice. Private pages are those allocated after forking a process for
a particular microservice invocation. Generally, shared pages are
more likely to be reused across core reassignments. So, HardHarvest
tries to keep entries from shared pages in the non-harvest region.

We can assume that all instructions and all data objects al-
located by the process that initializes a microservice are poten-
tially shared. For example, in microservices implemented using
the Thrift [78] or gRPC [28] frameworks, HardHarvest assumes
that all data allocated from the start of the microservice until exe-
cuting server.serve()[17, 19] is shared data. If the shared data
gets reallocated to expand its size, the new pages are also assumed
shared. On the other hand, data allocated by the threads in indi-
vidual invocations [18] is assumed to be private. Our profiling of
more than 60 microservices from open-source DeathStarBench [23],
TrainTicket [97], and 𝜇Suite [73] benchmark suites confirms this
behavior.

Based on these assumptions, when a page is allocated by a Pri-
mary VM, HardHarvest sets a Shared bit to 1 or 0 in its page table
entry. Such bit is copied to the TLB entries, and determines, on
an access, the preferred ways where a TLB entry or a cache line is
placed.
4.2.3 Cache/TLB Replacement Algorithm
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HardHarvest changes the algorithm that picks the victim way
when inserting an entry in private caches or TLBs. The aim is to
steer shared entries to the non-harvest region (Non-Harv) ways and
private entries to the harvest region (Harv) ways, while keeping
the algorithm simple. Algorithm 1 shows which way to pick when
inserting entry E in Set S. In the cases when the algorithm can
pick one of multiple victim candidates, it picks the victim using the
default replacement algorithm, which is LRU.

Algorithm 1: Inserting an entry in a private cache or TLB.
Inputs: E = entry to insert; S = set where E maps
Result: Cache/TLB way that takes E
if S has empty slots then

if empty slots in both Non-Harv and Harv then
if E is shared then

Take an empty slot in Non-Harv
else // E is private

Take an empty slot in Harv
else

Take an empty slot
else

if E is shared then
if any Non-Harv slot has a private entry then

Take the slot of one of them
else

if any Harv slot has a private entry then
Take the slot of one of them

else // All S slots have shared entries
Take a slot

else // E is private
if any Harv slot has a private entry then

Take the slot of one of them
else

if any Non-Harv slot has a private entry then
Take the slot of one of them

else // All S slots have shared entries
Take a slot

First, assume that there are empty slots in S. If there are both
Non-Harv and Harv empty slots, a shared entry takes a Non-Harv
empty slot and a private entry takes a Harv empty slot; otherwise,
E takes an empty slot. If, instead, there is no empty slot in S, the
action depends on whether E is shared or private. If E is shared, the
algorithm proceeds as follows. First, it checks Non-Harv for any
slots with a private entry. If there are any, E evicts one of them.
Otherwise, Harv is checked for any slots with a private entry. If
there are any, E evicts one of them. Otherwise, all the slots in S have
shared entries, and the algorithm picks one of them as the victim.

Instead, if E is private, the algorithm swaps steps one and two
above. First, it checks Harv for any slots with a private entry. If
there are any, E evicts one of them. Otherwise, the algorithm checks
Non-Harv for any slots with a private entry. If there are any, E evicts
one of them. Otherwise, all the slots in S have shared entries, and
the algorithm picks one of them as the victim. The algorithm swaps
steps when E is private because a private entry in Non-Harv will
not remain cached for too long. A shared entry may soon evict it.

Since Shared=1 for all instruction pages, this algorithm does
not change the default behavior of the L1 instruction cache/TLB.
The L2 cache/TLB have instructions and data. There, the algorithm
prioritizes instructions over private data. In practice, both data

and instructions in microservices have small working sets [23, 72].
Thus, assigning about half of the ways to Harv during harvesting
is typically tolerable.

Continuously prioritizing shared entries within a set can penalize
the performance of private entries. For example, if a set at some
point has only shared entries, from that point on, all private entries
will compete for a single way, making the set appear as direct-
mapped. To avoid this issue, HardHarvest uses Algorithm 1 to pick
an eviction victim only among the 𝑀 least-recently used entries
in the set. These entries are called Eviction Candidates, and can be,
e.g., 1/2 or 3/4 of all the entries of the set. The other, more-recently-
used entries are not considered. In this way, popular private data
avoids eviction, allowing services that have large private memory
footprints to operate with high performance.

With this design, HardHarvest makes a best effort to keep shared
entries in the Non-Harv ways without fully sacrificing the associa-
tivity for private entries.
4.2.4 Hardware Implementation of the Replacement Algorithm

We implement Algorithm 1 in a simple manner. Specifically, each
TLB/cache entry has a Shared bit that is set to 1 if the entry has
Shared state. Also, each way has a Harvest bit, which is set to 1 if
the way is a harvest way. These bits, together with the Invalid bit
of an entry, are used as inputs to two priority multiplexers that
determine the victim entry that should be replaced. One of the
multiplexers is used for incoming shared entries and the other for
private ones.

The multiplexer for incoming shared entries selects the victim
entry based on this decreasing priority: Invalid and Not Harvest;
Invalid; Not Harvest and Not Shared; Harvest and Not Shared.
The multiplexer for incoming private entries uses this decreasing
priority: Invalid and Harvest; Invalid; Harvest and Not Shared; Not
Harvest and Not Shared.
4.2.5 Other Issues

Current processors flush and invalidate caches inefficiently (Sec-
tion 3). Hence, for HardHarvest’s mechanisms to be effective, they
must be coupled with support for efficient flush/invalidate as pro-
posed elsewhere [30, 51]. In our evaluation, we will assume such
support and evaluate its contribution to performance separately.

5 Experimental Setup
Modeled Architectures.We model a cluster of 8 servers, where
each server has 36 beefy cores and 128GB of memory. Cores and
caches aremodeled after the Intel SunnyCovemicroarchitecture [13,
14, 89] present in the IceLake server processors [35]. Each core has
private L1 and L2 caches and TLBs, and a shared, physically dis-
tributed L3 cache. Each server has 8 Primary VMs, each with 4
cores, and 1 Harvest VM, which starts with 4 cores and harvests ad-
ditional cores from Primary VMs. Detailed architecture parameters
are shown in Table 1. We evaluate five systems:
• NoHarvest is a conventional system where no VM performs core
harvesting. As a result, many cores remain idle.
• Harvest-Term is a state-of-the-art software core harvesting system
as described in SmartHarvest [88]. In here, a Harvest VM harvests
cores only when the core is idle because it terminated a request, and
based on load prediction. We use Harvest-Term as the baseline. We
also model a more aggressive software design where, in addition, a
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Figure 11: P99 tail latency of microservices running in Primary VMs for the 5 evaluated architectures (lower is better).

Table 1: Architectural parameters used in the evaluation.

System and Processor Parameters

Machine Cluster of 8 servers
Server processor 36 6-issue cores at 3GHz
OoO Execution 352-entry ROB, 200-entry LSQ
L1 D-Cache 48KB, 12-way, 5 cyc. round trip (RT), 64B line
L1 I-Cache 32KB, 8-way, 5 cyc. RT, 64B line
L2 Cache 512KB, 8-way, 13 cycles RT, 32 MSHRs
L3 Cache Per core: 2MB, 16-way, 36 cyc. RT, 32 MSHRs
L1 TLB 128 entries, 4-way, 2 cycles RT
L2 TLB 2048 entries, 8-way, 12 cycles RT

Network

Intra Server 2D mesh, 5 cycles/hop
Inter Server 1𝜇s RT; 200GB/s

Virtual Machines

Primary VMs 8 VMs/server, each with 4 cores (fixed)
Harvest VMs 1 VM/server, with 4 cores + harvested cores

Main Memory per Server

Capacity; Rate 128GB; DDR4-3200; 4 memory controllers
Mem. Bandwidth 102.4GB/s per socket

HardHarvest Parameters

Num chunks in RQ 32
Num entries/chunk 64
Num Queue Manag. 16
Num regs in VM State Regs 16
Ways in Harv. Region 50% of all ways
Eviction Candidates (M) 75% of all ways
Flus+Inv HarvRegion 1000 cycles

Harvest VM also harvests cores when a request issues a blocking
call and the core it was running on becomes idle (Harvest-Block).
•HardHarvest is the design proposed in this paper. We consider two
versions: one where a Harvest VM harvests idle cores only when
they are idle because a service request terminates (HardHarvest-
Term), and one where, in addition, a Harvest VM also harvests cores
when they are idle because a request issues a blocking call and the
core becomes idle (HardHarvest-Block). The latter is our proposal.

All schemes use Intel’s DDIO technology. In the baseline schemes
(NoHarvest and Harvest-Term/Block), the NIC deposits the whole
request in the LLC.
Simulation Infrastructure.We evaluate the architectures with
full-system simulations using QEMU [70] and SST [67]. QEMU
captures both user-space and kernel-space instructions, memory
accesses, and system calls. QEMU forwards all the events to SST,
which models the architectures and performs cycle-level simula-
tions. Thus, the simulation models the whole software stack: OS
(Ubuntu 20.04), hypervisor, harvesting agents, and application logic.
The main memory system is modeled with DRAM-Sim2 [68].

Our modeled cluster is comprised of 8 servers to test a differ-
ent type of Harvest VM workload in each server, as we discuss

later. Such servers execute without requiring any communication
between them. This is because microservices do not communicate
across servers. Specifically, each server hosts an instance of each of
the evaluated microservices, but microservices only communicate
with other microservices that are placed on the same server. We use
the 1𝜇s inter-server communication latency to model the network
latency when a service accesses remote caches (e.g., Memcached),
key-value stores (e.g., Redis), or databases (e.g., MongoDB). These
backend services (Memcached, Redis, and MongoDB) run on dedi-
cated servers. We do not simulate the execution of the queries on
the backend services. Instead, we use the execution times obtained
by profiling them on a real server.

To make the simulation time tolerable, we run the simulations
in parallel. Each of the 8 servers is simulated on a different physi-
cal machine because servers do not communicate with each other.
In addition, within each simulated server, SST also runs in paral-
lel. With this design, the longest simulation (corresponding to 30
seconds of wall-clock time) takes 4 days.
Applications. For the latency-critical Primary VMs, we use 8 So-
cialNet microservices from DeathStarBench [23]. For the batch
workloads executed in the 8Harvest VMs, we use graph applications
from GraphBIG (BFS, CC, DC, and PRank) [60], ML training from
FunctionBench (LRTrain and RndFTrain) [41], data analytics from
CloudSuite (Hadoop) [64] and bioinformatics fromBioBench (MUM-
mer) [1]. We deploy each Primary VM with 4 cores because this is
the most common size for Alibaba’s microservice instances [87].
Each Harvest VM also starts with 4 cores. As indicated before, each
server has one Harvest VM running one of the batch applications,
and 8 Primary VMs, each running one of the microservices.

We pick 8 representative services from Alibaba’s production-
level open source traces [48] and we mimic their behavior with
our 8 DeathStarBench services. Hence, we execute with real-world
invocation rates, using an open-loop load generator that keeps the
load the same across all systems (i.e., the client is independent of
the server) [73]. The average load per Primary VM core is 65-250
requests per second (RPS). We report average and tail latency after
executing 100K microservice invocations across all 64 Primary VMs.
As done in prior work [39, 81], we match a service in the production
trace to the service in the DeathStarBench suite that has the most
similar service execution time.

6 Evaluation
6.1 End-to-End Tail Latency of Primary VMs
Figure 11 shows the P99 tail latency of microservices running in
Primary VMs for the 5 evaluated architectures. Software harvesting
schemes (Harvest-Term and Harvest-Block) have a high tail latency
due to software overheads. The average tail latency in Harvest-Term
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Figure 12: Cumulative impact of individual optimizations in HardHarvest on the P99 tail latency of Primary VMs. Core
harvesting is enabled.

and Harvest-Block is 3.4× and 4.1× higher, respectively, than in
NoHarvest. On the other hand, HardHarvest reduces the tail latency
substantially. Compared to Harvest-Term, HardHarvest-Term and
HardHarvest-Block reduce the tail latency by 83.3%. In fact, the tail
latency in these architectures is even lower than in NoHarvest: the
average tail latency in HardHarvest-Term and HardHarvest-Block is
30.5% and 28.4% lower, respectively, than inNoHarvest. The reason is
that some HardHarvest optimizations such as improved cache/TLB
replacement and request queuing in hardware not only speed-up
harvesting, but also microservices in general as well. The reductions
relative to Harvest-Term and Harvest-Block are more significant in
services that (i) operate mostly on shared pages such as HomeT, or
(ii) frequently block on I/O such as User.

6.2 Tail Latency Reduction Breakdown
Figure 12 shows the cumulative impact of individual optimizations
on the tail latency of Primary VMs. The figure starts with the tail
latency of software harvesting withHarvest-Term andHarvest-Block.
It then applies the following optimizations to Harvest-Block one
by one, in order: hardware request scheduler (+Sched), hardware
request queues (+Queue), in-hardware context switching (+CtxtSw),
cache/TLB partitioning with LRU replacement (+Part), efficient
cache/TLB flushing (+Flush), and optimized replacement policy
(HardHarvest). Recall that we borrow CxtSw [76] and Flush [30, 51]
from the literature, as they are needed to take full advantage of our
optimizations.

All techniques help reduce tail latency. On average, the grad-
ual application of these optimizations reduces the tail latency of
Harvest-Block by 25.6%, 35.5%, 61.1%, 80.1%, 83.6%, and 85.6%, respec-
tively. In-hardware request scheduling (+Sched) is effective because,
e.g., when a service that is blocked on I/O receives the response,
the scheduler ensures that it is scheduled right away. Without the
scheduler, a polling core would discover the ready service much
later, which hurts tail latency. Hardware queuing (+Queue) is effec-
tive because it reduces contention on the cache hierarchy relative
to memory-mapped queues, and also reduces the latency of request
fetching. Cache/TLB partitioning (+Part) also helps, even with LRU
replacement and without advanced hardware flushing. Advanced
hardware flushing (+Flush) has a small impact because, after a Pri-
mary VM resumes, flushing occurs in the background while the
Primary VM is already running. Finally, our proposed cache line
replacement (HardHarvest) further reduces the tail.

To see the relative impact of Sched and CxtSw, we perform an
ablation study in Figure 13. The figure takes Harvest-Block and
applies only CtxtSw, then only Sched, and then both CtxtSw and
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Figure 13: Ablation study on the effectiveness of in-hardware
context switching and hardware request scheduling.

Sched. We see that both Sched and CxtSw have a similar impact,
and when applied together, they have a partially additive effect.

6.3 Impact of the Optimized Cache
Replacement Policy

To understand the impact of the HardHarvest cache replacement
policy, Figure 14 shows the measured L2 cache hit rate in four
different environments: vanilla LRU, the RRIP advanced replace-
ment [37], our proposed policy (Algorithm 1), and an ideal cache
replacement policy (Belady [36]). We see that, on average, our algo-
rithm (HardHarvest) increases the L2 cache hit rate over LRU and
RRIP by 11.3% and 8.2%, respectively. Since RRIP does not differen-
tiate between Primary and Harvest processes accessing the same
cache, its re-reference interval calculations get polluted, leading to
sub-optimal performance. HardHarvest is within 3.1% of the ideal
replacement algorithm. Results are similar for L1 and TLBs.
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Figure 14: L2 hit rate with different replacement policies.

Since shared pages across invocations of the same service include
both code and data, we investigate whether prioritizing instruction
over data pages in the replacement algorithms of caches and TLBs
improves performance. We performed this experiment in HardHar-
vest via Code-Data-Prioritization (CDP) [61] in Intel’s CAT. We find
that such an approach is not beneficial. It increases the tail latency
by 8% over our proposed HardHarvest replacement policy.

6.4 HardHarvest Optimizations without Core
Harvesting

Figure 15 shows the tail latency of Primary VMs as we add HardHar-
vest optimizations to the NoHarvest baseline without performing



ISCA ’25, June 21–25, 2025, Tokyo, Japan Jovan Stojkovic, Chunao Liu, Muhammad Shahbaz, and Josep Torrellas

core harvesting. We evaluate +Sched, +Queue, +CtxtSw, and +Re-
plPolicy (which is our optimized replacement policy). Since there is
no harvesting, cache partitioning and cache flushing are not rele-
vant and not evaluated. We see that all four techniques are effective:
they cumulatively reduce the tail latency by 14.5%, 20.1%, 28.6%
and 33.6%, respectively. In-hardware request scheduling (+Sched)
is effective because, when a service that is blocked on I/O receives
the response, the scheduler ensures that it is scheduled right away.
The scheduler offloads CPU polling. Hardware queues (+Queue)
reduce contention in the cache hierarchy and the latency to fetch
the request. Finally, our replacement policy (+ReplPolicy) helps by
preserving shared entries in the caches/TLBs across invocations.
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Figure 15: Cumulative impact of optimizations on the P99
tail latency of Primary VMs. Core harvesting is disabled.

6.5 Median Latency of Primary VMs
Figure 16 shows the median latency of microservices in the five
evaluated architectures. Although we saw that software harvesting
significantly degrades tail latency, it has a modest impact on the
median latency. The median latency of Harvest-Term is only 7.9%
higher than NoHarvest. On the other hand, HardHarvest not only
reduces tail latency but is also effective at reducing the median
latency as well: HardHarvest-Block reduces the median latency by
26.1% over NoHarvest.
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Figure 16: Median latency of microservices in Primary VMs.

6.6 Throughput of Harvest VMs
The target metric for Harvest VMs is throughput (i.e., the number
of jobs executed per unit of time). Figure 17 shows the throughput
of Harvest VMs with the evaluated architectures normalized to
NoHarvest. On average, Harvest-Term [88] and HardHarvest-Block
(our proposal) improve throughput by 1.7× and 3.1×, respectively.
Memory-intensive applications, e.g., RndFTrain, see slightly lower
throughput gains. HardHarvest-Block improves the throughput over
Harvest-Term because it (i) steals cores whose service is blocked on
I/O (i.e., it harvests more cores), and (ii) reduces the overheads of
core reassignment (i.e., Harvest VMs start running on stolen cores
sooner).

6.7 Core Utilization
HardHarvest benefits cloud providers as it increases the utiliza-
tion of the cores. It can be shown that NoHarvest, Harvest-Term,
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Figure 17: Throughput ofHarvest VMswith the five evaluated
architectures normalized to NoHarvest.

Harvest-Block, HardHarvest-Term, and HardHarvest-Block have an
average utilization of 10.3, 23.8, 26.5, 28.7, and 34.8 cores out of
the available 36 cores in the server, respectively. HardHarvest has
higher core utilization because it performs core harvesting in hard-
ware, using cores efficiently and eliminating emergency buffers.
Overall, HardHarvest-Block increases core utilization by 1.5× over
Harvest-Term.

6.8 Storage Cost
HardHarvest adds the hardware controller in Figure 9 to each server.
The storage cost of a controller is a 2K-entry RQ, where each entry
has 66 bits (2 bits for the request status and 64 bits for a pointer
to the request payload) and, for each of the 16 pairs of QMs and
VM State Register Sets: 1) 16 VM State registers of 8B each, 2) a
24B RQ-Map, and 3) a 5B HarvestMask register. The total storage
cost per controller is 18.9KB (or 0.53KB per core). On top of that,
each entry in the TLBs, L1 D-caches, and L2 caches has an extra
Shared bit, which results in a total storage cost per server of 67.8KB
(or 1.9KB per core). We use McPAT [46] to estimate the power
and area overheads of these storage structures. Scaling to 7nm
technology [74], the resulting overheads are only 0.19% and 0.16%
increases in area and power (dynamic plus static), respectively, of
the multicore.

6.9 Sensitivity to LLC Size
Throughout the evaluation, we used an LLC with 2MB per core. In
this section, we perform a sensitivity study to see the impact of
different LLC sizes on the effectiveness of HardHarvest. Note that
the LLC is non-inclusive of the L2. Figure 18 shows the P99 tail la-
tency of microservices running Primary VMs in HardHarvest-Block
with different LLC sizes. When we increase the LLC size to 2.5MB
per core, the tail latency reduces because there are fewer misses,
while when we decrease the LLC size, the tail latency increases.
Overall, the changes in latency are small because microservices
have relatively modest footprints.
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Figure 18: P99 tail latency of microservices running in Pri-
mary VMs with HardHarvest-Block and different LLC sizes.
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6.10 Sensitivity to Eviction Candidate Set Size
Throughout the evaluation, we set the eviction candidate set to be
75% of all ways in a set. In this section, we perform a sensitivity
study to see the impact of different sizes of the eviction candidate
set on the effectiveness of HardHarvest. Figure 19 shows the P99
tail latency of microservices running Primary VMs in HardHarvest-
Block with different sizes of the eviction candidate set. We see that,
when we decrease the eviction candidate set size (to 25% and 50%),
the tail latency increases because the algorithm is unable to preserve
some shared lines. On the other hand, whenwe increase the eviction
candidate set size to 100%, the tail latency again increases because
the algorithm keeps evicting needed private cache lines.
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Figure 19: P99 tail latency of microservices in HardHarvest
with different sizes of the eviction candidate set.

7 Related Work
Resource Harvesting. Currently, spare cloud resources are har-
vested via software techniques [5, 49, 69, 77, 88, 90, 92, 93]. To
minimize the interference on latency-critical tasks, co-located work-
loads can be isolated via cache partitioning and power control [47],
or memory bandwidth control [50]. We show that software-only
harvesting techniques introduce overheads that are not tolerable
for microservices workloads. HardHarvest proposes a hardware
solution for core harvesting with much lower overheads.
Software for Scheduling and Context Switching. A large body
of work proposed software solutions for fast scheduling and con-
text switching [8, 21, 31, 38, 49, 52, 53, 63, 65, 91, 98]. ZygOS [65]
allows cores to steal requests from other cores for load balance.
Shenango [63] dedicates a core for scheduling. In cloud environ-
ments, on every cross-VM context switch, these systems perform
expensive cache flushes and core reassignments.
Hardware Support for Microservices. Researchers have pro-
posed hardware support for microservices [33, 45, 57–59, 75, 76, 96].
RPCValet [15] uses the on-chip NICs to perform in-hardware load
balancing. 𝜇Manycore [76] proposes a manycore architecture spe-
cialized for microservices. Duplexity [59] re-configures between
latency-critical and batch modes of execution. These schemes do
not consider core harvesting and could be combined with Hard-
Harvest. Hyperplane [57] proposes a hardware solution to avoid
fruitless core spinning on empty queues. However, while the core
is busy, Hyperplane does not detect the arrival of higher priority
requests and does not notify/interrupt the core. Thus, it cannot be
directly used for core harvesting.

8 Conclusion
This paper proposed HardHarvest, the first architecture for core
harvesting in hardware. HardHarvest eliminates software-based
overheads by using hardware request queues to speed-up core

reassignment, and by partitioning private caches/TLBs while us-
ing a smart replacement algorithm. Compared to state-of-the-art
core harvesting, HardHarvest increased core utilization by 1.5×,
increased Harvest VM throughput by 1.8×, and reduced Primary
VM tail latency by 6.0×.
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