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Mobile Augmented Reality (AR), which overlays digital content on the real-world scenes surrounding a user,

is bringing immersive interactive experiences where the real and virtual worlds are tightly coupled. To enable

seamless and precise AR experiences, an image recognition system that can accurately recognize the object in

the camera view with low system latency is required. However, due to the pervasiveness and severity of image

distortions, an effective and robust image recognition solution for “in the wild” mobile AR is still elusive. In

this article, we present CollabAR, an edge-assisted system that provides distortion-tolerant image recognition

for mobile AR with imperceptible system latency. CollabAR incorporates both distortion-tolerant and collabo-

rative image recognition modules in its design. The former enables distortion-adaptive image recognition to

improve the robustness against image distortions, while the latter exploits the spatial-temporal correlation

among mobile AR users to improve recognition accuracy. Moreover, as it is difficult to collect a large-scale

image distortion dataset, we propose a Cycle-Consistent Generative Adversarial Network-based data augmen-

tation method to synthesize realistic image distortion. Our evaluation demonstrates that CollabAR achieves

over 85% recognition accuracy for “in the wild” images with severe distortions, while reducing the end-to-end

system latency to as low as 18.2 ms.
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1 INTRODUCTION

Mobile augmented reality (AR), which overlays digital content with the real world around a
user, has recently jumped from the pages of science fiction novels into the hands of consumers.
To enable a seamless contextual AR experience, an effective image recognition system that can
accurately recognize objects in the camera view of the mobile device with imperceptible latency is
required [2, 3]. While this may come across as a solved problem given the recent advancements
in deep neural networks (DNNs) [4, 5] and mobile offloading [2, 6, 7], there are three practical
aspects that have been largely overlooked in existing solutions.

First, in real-world mobile AR scenarios, a large proportion of images taken by the smartphone
or the head-mounted AR device contains distortions. For instance, images frequently contain mo-
tion blur caused by the motion of the user [2, 8]. Gaussian blur appears when the camera is de-
focusing or is used in an underwater AR scenario [9]. Noise is also inevitable in low illumination
conditions [10] or with the use of low-quality image sensors [11]. Indeed, using two different
commodity mobile AR devices, our measurement study (Section 3.3) indicates that over 70% of the
images can be corrupted by distortions in different practical scenarios. Given the high distortion pro-
portion, simply filtering out the distorted images, as has been suggested in prior work [2, 3, 12],
can hardly solve the problem.

Second, for image recognition, applying DNNs trained on large-scale datasets, e.g., Ima-
geNet [13] and Caltech-256 [14], directly to images that contain severe image distortion is difficult
and often results in dramatic performance degradation [10, 15, 16]. This deficiency results from
the domain shift problem, where distorted images fail to share the same feature distribution with
the clear training images [15, 17, 18]. Indeed, when testing distorted images with a pre-trained
MobileNetV2 [5] network on the Caltech-256 dataset, we observe that even a small amount of
distortion in the images can significantly affect the recognition accuracy (Section 3.2). Although
deblurring methods and spatial filters [19] can be used to reduce distortions, they also remove the
fine-scaled image details that are useful for image recognition. There have also been attempts to
overcome this limitation by designing distortion-robust DNNs [10, 15, 16, 18], but their improve-
ments are limited when the images contain multiple distortions or when the distortion level is
high.

Lastly, to achieve imperceptible recognition latency for resource-constrained mobile AR de-
vices, a number of works have explored computation offloading [2, 6, 20, 21] and approximate
computation reuse [7, 22] to reduce the system overhead. Although the state-of-the-art solutions
have reduced the end-to-end system latency below 33ms [6, 20], such performance is achieved in
distortion-free or distortion-modest environments. The challenge in mitigating the trade-off be-
tween recognition accuracy and system latency for mobile AR with severe multiple distortions
has not been addressed.

To fill this gap, we present CollabAR, an edge-assisted Collaborative image recognition frame-
work for mobile AR. Thanks to the recent advances in AR development platforms, AR applications
have become more accessible on a wide range of mobile devices. We have seen many dedicated
AR devices, such as Microsoft HoloLens [23] and Magic Leap One [24], as well as Google ARCore
[25] and Apple ARKit [26] SDKs that work on a wide range of mobile phones and tablets. The
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pervasive deployment of mobile AR will offer numerous opportunities for multi-user collabora-
tion [12, 27]. In fact, we have seen significant research and commercial efforts in multi-user AR
platforms and applications [28–34]. Examples include the “shared AR experience” feature in Poke-
mon Go [31] that allows users to share and view the same virtual character in the same space and
the “local lenses” feature in Snapchat [32] that enables large-scale collaborative AR at landmark,
iconic locations such as London’s Carnaby Street to provide shared AR experience. Examples of
industrial adopters of shared AR are Ford and Lockheed Martin, whose designers and engineers
use the Microsoft HoloLens to speed up collaboration and prototyping [33, 34]. In addition to the
pervasiveness of mobile AR, users that are in close proximity usually exhibit a strong correlation
in both device usage and spatial-temporal context [35]. The requested image recognition tasks
are usually correlated temporally (e.g., consecutive image frames from the same user [6, 7, 36])
or spatially (e.g., different users aim to recognize the same object [12, 22]). Although the images
are taken from different positions or at different times, they contain the same object [22]. Thus,
unlike conventional image recognition systems where individual users independently complete
their tasks to recognize the same object [2, 6, 20], CollabAR embraces the concept of collaborative
image recognition in its design and exploits the temporally and spatially correlated images captured
by the users to improve the image recognition accuracy.

Bringing this high-level concept into a holistic system requires overcoming several challenges.
First, we need to address the domain adaptation problem [17] caused by the image distortions. As
DNNs can adapt to a particular distortion type but not multiple types at the same time [10, 17], we
need to adaptively select a DNN that has been fine-tuned to recognize a specific type of distorted
images in runtime. We introduce the distortion-tolerant image recognizer, which incorporates the
image distortion classifier and a set of dedicated recognition experts. CollabAR employs the image
distortion classifier to identify the most significant distortion contained in the image and triggers
one of the dedicated recognition experts to handle the distorted image. This distortion-adaptive
selection of a recognizer ensures a lower feature domain mismatch between the image and the
selected DNN and a better robustness against distortions.

Second, to enable collaborative image recognition, we need to identify a set of spatially and
temporally correlated images that contain the same object. Prior works rely on image feature
vectors [22] or feature maps [7] to identify temporally correlated images (e.g., continuous frames
in a video). However, image features are vulnerable to distortions and result in high lookup errors
in practical AR scenarios. Moreover, existing methods assume spatial differences between images
to be small, e.g., adjacent image frames in a video. However, in mobile AR scenarios, correlated
images can be taken from different angles and positions with large spatial differences and, thus,
result in feature mismatch and lookup error. CollabAR introduces the anchor-based pose estimation
and the spatial-temporal image lookup module to efficiently identify correlated images.

Third, as the correlated images suffer from various distortions with different severity levels, they
lead to heterogeneity in the recognition confidence and accuracy. Conventional multi-view image
recognition systems [37, 38] lack a reliable metric to differentiate the heterogeneity and are not
able to optimally aggregate the multi-view results [39]. In this work, we propose the Auxiliary-

assisted Multi-view Ensemble Learning (AMEL) to dynamically aggregate the heterogeneous
recognition results of the correlated images.

Fourth, to improve robustness against image distortion, a large volume of distorted images is
required during the training to fine-tune the DNNs. Unfortunately, in practice, it is difficult to
collect a large number of images with different types of distortions. In our previous work [1],
we apply mathematical models to synthesize images with different distortions. However, the gap
between the mathematically synthesized distortions and the real-world distortions [40, 41] results
in drops in recognition accuracy when the system is applied to “in the wild” AR scenarios. To
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alleviate this problem, we formulate the task of image distortion synthesis as an “unpaired image-to-
image translation” problem and propose the use of Cycle-Consistent Generative Adversarial

Networks (CycleGANs) [42] to generate realistic image distortions.
Lastly, having all the system building blocks in mind, we aim to provide imperceptible system

latency (i.e., below 33ms to ensure 30fps continuous recognition), without sacrificing accuracy.
The targeted low system latency can leave more time and space for many other computation-
intensive tasks (e.g., virtual object rendering) that are running on mobile AR devices. We explore
several design options (i.e., selection of DNN models, what to offload and what to process locally)
and conduct a comprehensive system profiling to guide the final optimized implementation.
We propose an edge-assisted system framework to mitigate the trade-off between recognition
accuracy and system latency.

In this article, we present CollabAR, a collaborative image recognition system for mobile AR.
Our main contributions are:

• We propose the distortion-tolerant image recognizer to resolve the domain adaptation
caused by image distortions. Specifically, we design the image distortion classifier to en-
able distortion-adaptive DNN selection and design a set of dedicated recognition experts to
achieve distortion-tolerant image recognition for “in the wild” mobile AR. Compared to con-
ventional methods, the proposed solution improves the recognition accuracy by 17.6% over
different image distortions and distortion levels.
• To further boost the recognition accuracy, CollabAR embraces collaboration opportunities

among mobile AR users and exploits the spatial-temporal correlation among images for
multi-view image recognition. CollabAR introduces the anchor-based image lookup module to
effectively identify the spatially and temporally correlated images, and the auxiliary-assisted
multi-view ensemble learning framework to dynamically aggregate the heterogeneous multi-
view results. Compared to the single-view-based recognition, the proposed method can im-
prove the recognition accuracy by 9.3% to 19.4% in severe multiple distortions scenario.
• We implement CollabAR on four different commodity devices and evaluate its performance

on two multi-view image datasets, one public and one collected by ourselves. The evaluation
demonstrates that CollabAR achieves over 85% recognition accuracy for “in the wild” images
that contain severe multiple distortions, while reducing the end-to-end system latency to as
low as 18.2ms for commodity mobile devices.

The rest of the article is organized as follows. Section 2 reviews the related work. Section 3
introduces the background and challenges. Section 4 presents the system overview. Section 5 in-
troduces the real-world multi-view multi-distortion dataset we collected. Section 6 describes our
CycleGAN-based image distortion augmentation. The design details of the distortion-tolerant rec-
ognizer and the collaborative multi-view image recognition framework are given in Sections 7 and
8, respectively. We present the evaluation in Section 9 and conclude the article in Section 10.

The research artifacts, including the multi-view multiple distortions image dataset we collected
(Section 5) and the source codes for both the distortion-tolerant image recognizer and the auxiliary-
assisted multi-view ensemble learning framework, are available at https://github.com/CollabAR-
Source/.

2 RELATED WORK

As a holistic image recognition system for multi-user mobile AR, CollabAR builds on a body of
prior work in mobile AR, distortion-tolerant image recognition, distributed image recognition,
and GAN-based image augmentation and restoration.
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2.1 Image Recognition for Mobile AR

Before overlaying the rendered virtual objects on the view of a user, mobile AR systems leverage
image recognition to identify the object appearing in the view. For this purpose, image retrieval [2,
20], image localization [3], and DNN-based image recognition methods [6] are widely used in
prior work. Image-retrieval-based solutions, such as OverLay [2] and Jaguar [20], exploit salient
feature descriptors to match the image in the user’s view with the annotated image stored in
the database. However, salient descriptors are vulnerable to image distortions; a large proportion
of images cannot be correctly recognized but are simply filtered out [2]. Image-localization-based
methods require the server to maintain the annotated image dataset of the service area [43], which
is computationally heavy and involves a large volume of data [3]. Moreover, image localization also
relies on salient image features and fails when the images contain any type of distortion. Lastly,
DNN-based solutions [6] perform well with pristine images, but even a small amount of distortion
can lead to a dramatic performance drop [10, 15]. Instead of filtering out the distorted images,
CollabAR incorporates the distortion-tolerant image recognizer to enable image recognition for
mobile AR systems.

2.2 Distortion-tolerant Image Recognition

Recent efforts have been made by the computer vision community in resolving the negative im-
pacts of image distortion on DNNs [10, 15, 16, 18]. A widely used approach to improve the re-
silience of DNNs on distorted images is to fine-tune the networks with distorted images. Dodge
and Karam [10] propose a mixture-of-experts-based model, in which recognition experts are fine-
tuned to handle a specific image distortion, and their outputs are aggregated using a gating net-
work. In [15], Ghosh et al. propose a similar master-slave convolutional neural network (CNN)

architecture for distorted image recognition. In their design, a quality prediction network is used
as the master to select the slave CNNs that are fine-tuned with specific image distortions. Another
trend is to correct and attenuate the impacts of image distortions on the feature distribution of
the DNNs. Borkar and Karam [16] propose an objective metric to identify the most distortion-
susceptible convolutional filters in the CNNs. Correction units are added in the network to correct
the outputs of the identified filters. Sun et al. [41] propose a feature quantization approach to
enhance the robustness of CNNs against distortions. They integrate non-linearity into the convo-
lution operation of the CNNs to attenuate the feature distribution shift due to image distortion.
However, prior works mainly focus on the single-view scenario and fail when the image contains
multiple distortions or the distortion level is high [10, 15, 16]. In contrast, CollabAR can dynami-
cally aggregate the spatially and temporally correlated images to improve recognition accuracy in
the multiple distortions scenario.

2.3 Distributed Image Recognition

Using distributed information collected from multi-camera setups for image and object recogni-
tion is a widely studied topic. For instance, in DDNNs [38], distributed deep neural networks
are deployed over cloud, edge, and end devices for joint object recognition. By leveraging the
geographical diversity of a multi-camera network, DDNNs improve the object recognition accu-
racy. To improve the accuracy for distortion-tolerant pill image recognition, MobileDeepPill [44]
relies on a multi-CNN model to collectively capture the shape, color, and imprint characteris-
tics of pills. Kestrel [45] incorporates a video analytics system that detects and tracks vehicles
across heterogeneous multi-camera networks. These existing systems only perform in distortion-
free [38] or distortion-modest environments [44]. They are not able to recognize the image if it con-
tains severe or multiple distortions. Moreover, many of them suffer from high end-to-end latency
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(i.e., 200ms) [45]. In contrast, CollabAR exploits a set of distortion-tolerant recognition experts
and spatial-temporal correlations among multi-view images to boost the image recognition per-
formance for “in the wild” mobile AR images with distortion. It also leverages the edge-assisted
framework to mitigate the trade-off between recognition accuracy and system latency.

2.4 GAN-based Image Augmentation and Restoration

Generative Adversarial Networks (GANs) [46] and CycleGANs [42] have been widely used for
image augmentation. For example, Zhu et al. [47] propose the use of CycleGAN-based data aug-
mentation for image-based emotion classification. They design a CycleGAN-based framework to
generate auxiliary data for minority classes in the training dataset. Similarly, Sandfort et al. [48]
propose the use of CycleGAN for data augmentation in computed tomography (CT) segmenta-
tion. The CycleGAN is used to transform contrast CT images into non-contrast images and gener-
ates synthetic non-contrast images for DNN training. GAN and CycleGAN have also been used for
image restoration. For instance, Engin et al. [49] introduce the Cycle-Dehaze model to recover im-
age from Gaussian blur. Chen et al. [40] leverage GAN to synthesize noisy images, which are then
used as the training samples for a CNN-based denoising network. Bulat et al. [50] propose the use
of GAN to effectively increase the quality of real-world low-resolution images. By contrast, in this
work, we propose the use of CycleGAN to generate three types of distorted images that frequently
appear in real-world mobile AR scenarios. The synthesized distorted images are used to improve
the recognition robustness of the distortion-tolerant image recognizer.

3 BACKGROUND AND CHALLENGES

We consider three types of image distortion: motion blur, Gaussian blur, and Noise. Below, we first
introduce the basics of the image distortions and then provide a measurement study to understand
their impacts on image recognition and their pervasiveness in real-world mobile AR scenarios.

3.1 Image Distortions

Motion blur (MBL): Images taken by the smartphone or the head-mounted AR set camera fre-
quently contain motion blur caused by the motion of the user [2]. The severity of motion blur is
affected by the changing speed of the image content and the exposure time of the camera [51]. When
the camera is steady, the exposure time is short such that the camera only captures an instanta-
neous moment of the scene and, thus, forms a sharp image. However, when the mobile device is
shaking during the exposure, it causes scene movements and leads to the integration of instan-
taneous signals from different scenes and, thus, results in motion blur. We can approximate this
process by accumulating signals from successive frames [51] and obtain the motion blur image
FMBL by the following accumulation process [51]:

FMBL = д

(
1

T

∫ T

t=0

S (t )dt

)
� д �

�

1

M

M−1∑
i=0

S[i]�
�
, (1)

whereT is the exposure time, S (t ) is the camera sensor signal at time t , M is the number of frames
captured during the exposure time, and S[i] is the ith frame. Lastly, д is the Camera Response

Function (CRF) that maps the latent signal S[i] into an observed image Ŝ[i], such that Ŝ[i] =
д(S[i]). Generally, the ground-truth CRF is not given, but a common method is to approximate
CRF as a gamma curve д = x1/γ with γ = 2.2 [52]. The latent signal S[i] can be obtained from the

sharp frame Ŝ[i] by S[i] = д−1 (Ŝ[i]).
Gaussian blur (GBL): Gaussian blur appears when the camera is de-focusing or the image is

taken underwater (e.g., in underwater AR [9]) or in a foggy environment [19]. Specifically, during
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image generation, the camera lens converges all the light rays coming from a point of the object
at the focus distance to a point in the image plane. When the light rays converge in front of or
behind the image plane, point appears as a blurred spot in the image. The blur level of the image
is determined by the diameter of the blurred spot, ρ, which can be defined as [53]

ρ =
| L − D |

L
× f 3

A(D − f )
, (2)

where L is the distance between the object and the camera lens, D is the focus distance, f is the
focal length, and A is the aperture size. The larger the value of ρ, the higher the blur level.

Noise (N): Noise is also inevitable in images, which causes random variation in brightness
or color information in the pristine images. Possible sources of noise include poor illumination
conditions [10], digital zooming, and the use of a low-quality image sensor [11]. Although real-
world noise is signal dependent and can hardly be modeled by an explicit math equation, it is widely
known that for a given camera sensor, both high ISO value [54, 55] and low light condition [54] will
generate noise in the captured image.

3.2 Impact of Distortion on Image Recognition

Deep neural networks, such as the VGG16 [56] and the MobileNetV2 [5], have shown good per-
formance in image recognition. However, as DNNs are usually trained and tested on images that
are pristine, e.g., ImageNet [13], directly applying them to images that contain severe multiple
distortions often leads to dramatic performance degradation [16, 19, 57]. This deficiency results
from the domain shift problem where real-world distorted images fail to share the same feature
distribution with the pristine training images [15, 17, 18].

As a case study to quantify this impact, we investigate the image recognition accuracy of
MobileNetV2 and VGG16 on distorted images. Leveraging the dataset we collected (details are
given in Section 5), we first pre-train the two networks using the pristine images and then test
their performance on the distorted images. Figure 1 shows the examples of images containing dif-
ferent types of distortion at different severity levels. As shown, for each type of distortion, we
consider four different distortion levels (details about the distortion level are given in Section 5).
The impacts of image distortions on the recognition accuracy of DNNs are shown in Figure 2. We
can observe that even a small amount of distortion in the images could significantly affect the recog-
nition accuracy. For instance, when the images are containing a low-level motion blur (level 1), we
can see a significant accuracy drop of 49.1% and 37.9% on MobileNetV2 and VGG16, respectively,
even though the distortion at this level does not hinder the human eyes’ ability to recognize the
object [58] (e.g., see an example in Figure 1(a)).

3.3 Image Distortion for Real-world Mobile AR

Below, we quantify the extent of image distortion in real-word mobile AR scenarios. We use two
commodity AR devices, the Nokia 7.1 smartphone and the Magic Leap One head-mounted AR
set, to record videos (at 30fps) in different environments and measure the proportion of recorded
frames that suffer from severe image distortions.

First, to quantify Noise, we use the Nokia 7.1 to record videos in environments with poor illu-
mination conditions, i.e., indoor dark room (with 7lux). In addition, to study noise resulting from
digital zooming, we conduct an experiment in an indoor environment at daytime (with 509lux) and
turn on the built-in digital zoom function of the Nokia 7.1 to record videos of objects that are 3 me-
ters away. We cannot record video using Magic Leap One as its image and video recording service
is unavailable when the light condition is low, and it supports neither digital nor optical image
zooming. Second, to quantify motion blur, we ask one user to hold the Nokia 7.1 in his or her hand
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Fig. 1. Examples of images containing different types of distortion with different severity levels: (a) motion
blur, (b) Gaussian blur, and (c) noise. The distortion severity increases from left to right. Although distortions
do not hinder the human in recognizing the object, they severely affect the performance of DNNs.

Fig. 2. Impacts of image distortion on the recognition performance of MobileNetV2 and VGG16. For all the
three distortion types, the recognition accuracy drops dramatically with the distortion level.

and ask another user to wear the Magic Leap One. They record videos using the device front cam-
era in both indoor corridor (with 178lux) and sunny outdoor (with 9873lux) environments when
walking at a normal pace. Lastly, to quantify Gaussian blur, we put the Nokia 7.1 in a waterproof
case and record videos in both underwater (a bathtub filled with water) and foggy environments
(a foggy bathroom).1 The collected images make up the MobileDistortion dataset, which we made
publicly available at https://github.com/CollabAR-Source/Distortion.

To determine if an image suffers from severe distortion, we use three standard distortion detec-
tors to measure the distortion level. Specifically, we apply the image spatial quality estimator [59],
the partial-blur image detector [60], and the Cumulative Probability of Blur Detection (CPBD)

metric [61] to detect noise, motion blur, and Gaussian blur, respectively. The results are shown in

1We do not conduct this experiment with a Magic Leap One as we are unaware of the availability of waterproof cases for

it.
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Table 1. Measurements of Image Distortions in Real-world Mobile AR Scenarios

Distortion Setting
Hardware

Nokia 7.1 Magic Leap One

Noise
Dark room (7lux) 429/889 = 48.3% Infeasible

Camera zoom-in (509lux) 1,378/1,582 = 87.10% Infeasible

Motion blur
Corridor (178lux) 1,671/3,452 = 48.40% 3,641/3,776 = 96.4%

Sunny outdoor (9,873lux) 1/2,687 = 0.03% 335/2,766 = 12.11%

Gaussian blur
Foggy 430/935 = 45.9% Infeasible

Underwater 809/1,524 = 53.0% Infeasible

A large proportion of images suffer from severe distortions; simply filtering out the distorted images can hardly

solve the problem.

Table 1. The illumination of the environment is measured using the smartphone light sensor that
is adjacent to the smartphone camera.

First, we apply the image spatial quality estimator [59] to quantify image noise and leverage the
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [59] as the quality metric.
An image is considered to have severe noise if the BRISQUE is larger than 30 (which corresponds
to the level 1 noise shown in Figure 1). In poor-illumination conditions, over 48.3% of the images
recorded by the Nokia 7.1 suffer from severe noise. Moreover, when using digital zooming, 87.1% of
the images suffer from severe noise due to the additive noise introduced in digital image processing.

Second, we apply the partial-blur image detector [60] to quantify motion blur. It uses the scaled
mean magnitudes of the image’s Fast Fourier Transforms as the blurry value for motion blur mea-
surement. An image is considered to have severe motion blur when its blurry value is smaller than
1.45 (corresponding to the level 1 motion blur in Figure 1). As shown in Table 1, for Magic Leap One,
96.4% and 12.11% of the recorded images suffer from severe motion blur in the corridor and the
outdoor environments, respectively. For Nokia 7.1, 48.40% and 0.03% of the images contain severe
motion blur in these two environments. As expected, we observe that there is less motion blurring
in the sunny outdoor environment (9,873lux) than in the corridor (178lux): as the camera exposure
time is shorter with a higher illumination and the impact of motion on the image is proportional
to the exposure time, there is less motion blurring in high-illumination environments.

Lastly, we apply the CPBD metric [61] to measure Gaussian blur. An image is considered to have
severe Gaussian blur if the CPBD value is smaller than 0.48 (corresponding to level 1 Gaussian blur
in Figure 1). The results show that 45.9% and 53.0% of the images suffer from severe Gaussian blur
in the underwater and foggy environments, respectively.

Overall, our measurements highlight the pervasiveness and severity of image distortions in real-
world scenarios. Given the high distortion proportion, simply filtering out the distorted images, as
has been suggested in prior work [2, 3, 12], can hardly solve the distortion problem for practical
AR applications.

4 SYSTEM OVERVIEW

The architecture of CollabAR is shown in Figure 3, which incorporates three components: (1) the
distortion-tolerant image recognizer, (2) the correlated image lookup module, and (3) the auxiliary-
assisted multi-view ensembler. They are deployed on the edge server to mitigate the trade-off be-
tween recognition accuracy and end-to-end system latency (detailed system measurements are
given in Section 9.4). In addition to the server, the client is running an anchor-based pose estima-
tion module, which leverages the cloud anchors provided by the Google ARCore [25] to track the
location and orientation of the mobile device.
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Fig. 3. System architecture of CollabAR. The client takes an image of the object and sends it to the edge
along with the cloud anchors in the camera view. The image is used as the input for image recognition and
the cloud anchors are used for correlated image lookup.

When the user takes an image of the object, the mobile client sends the image along with the
IDs of the anchors in the camera view to the server. Having received the data, the server marks the
image with a unique image ID and a timestamp. The image is used as the input for the distortion-
tolerant image recognizer, while the anchor IDs and the timestamp are used as references for
spatial-temporal image lookup. In CollabAR, anchor IDs and timestamps are stored in the anchor-
time cache in the format of < imageID, {anchorIDs}, timestamp >, while the recognition results of
the images are stored in the results cache in the format of < imageID, inferenceResult > for future
reuse and aggregation. In our design, we do not share information among the clients. Instead,
clients communicate directly with the edge server to ensure high recognition accuracy and low
end-to-end latency. Note that CollabAR can be readily adapted to video-input-based design, as
videos can be treated as streams of image frames in this scenario. In fact, based on the end-to-end
system latency measured in Section 9.4, CollabAR can support 50fps continuous recognition.

Distortion-tolerant image recognizer: The distortion image recognizer incorporates an im-
age distortion classifier (Section 7.1) and four recognition experts (Section 7.2) to resolve the do-
main adaptation problem [17] caused by the image distortions. As DNNs can adapt to a particular
distortion but not multiple distortions at the same time [10, 17], we need to identify the most
significant distortion in the image and adaptively select a DNN that is dedicated to the detected
distortion. As shown in Figure 3, for a new image received from the client, the distortion classifier
detects if the image is pristine or if it contains any type of distortion (i.e., motion blur, defocus
blur, or noise). Then, based on the detected distortion type, one of the four recognition experts is
triggered for the recognition. Each of the recognition experts is a CNN that has been fine-tuned
to recognize a specific type of distorted images. The inference result of the expert is sent to the
auxiliary-assisted multi-view ensembler for aggregation and is stored in the results cache for reuse.

Correlated image lookup: To enable collaborative image recognition, the correlated image
lookup module (Section 8.1) searches the Anchor-time cache to find previous images that are
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spatially and temporally correlated with the new one. The anchor IDs are used as the references
to identify the spatial correlation, while the timestamps are used to determine the temporal
correlation. The correlated images could be the images that are captured by different users or the
continuous image frames that are obtained by a single device. The IDs of the correlated images
are forwarded to the auxiliary-assisted multi-view ensembler.

Auxiliary-assisted multi-view ensembler: Based on the identified image IDs, the multi-view
ensembler retrieves the inference results of the correlated images from the results cache. Together
with the recognition result of the new image, the retrieved results are aggregated by the multi-
view ensemble learning module to improve the recognition accuracy. Specifically, as the correlated
images suffer from various distortions with different severity levels, they are unequal in quality
and lead to heterogeneity in the recognition accuracy. CollabAR leverages Auxiliary-assisted

Multi-view Ensemble Learning (AMEL) (Section 8.2) to dynamically aggregate the heteroge-
neous results provided by the correlated images.

As an image-recognition-based solution, CollabAR does not support multi-object recognition
in its current design. Instead, we follow the observations that in many commercial mobile AR
applications (e.g., the BBC Civilisations AR [62] and the QuiverVision [63]) the visual scene only
contains one major object of interest. In these scenarios, CollabAR can be used to recognize the
object of interest directly and link it to the associated holographic content without the need for
fiducial markers.

5 REAL-WORLD MULTI-VIEW MULTI-DISTORTION IMAGE DATASET

In this section, we introduce the Real-world Multi-View Multi-Distortion image Dataset

(RMVMDD) we have collected to study the impact of “in the wild” image distortion on multi-
view AR.

Our dataset includes a pristine image set, three single-distortion image sets, and four multiple-
distortion sets. For each of the image sets, six categories of everyday objects are considered: cup,
shoe, bottle, book, box, and pen. Each category has six instances. For each instance, images are
taken from six different views (six different angles with a 60◦ angle difference between any two
adjacent views). The details are summarized in Table 2. All the images are collected by a commodity
Nokia 7.1 smartphone. The resolution of the images is 3024× 4032. The dataset is publicly available
at https://github.com/CollabAR-Source/RMVMDD.

Pristine image set: We consider three object sizes for the pristine image set. Specifically, we
adjust the distance between the camera and the object such that the object occupies approximately
the whole, half, and one-ninth of the total area of the image. In total, we collect 6 × 6 × 6 × 3 =
648 pristine images (examples are shown in Figure 4).

Motion blur image set: The severity of motion blur is decided by the changing speed of the
image content (relative speed between the camera and the object) and the exposure time of the
camera. As the object is stationary, we create a constant horizontal movement and fix the relative
speed by placing the smartphone on a rotation turntable. The turntable is rotating constantly at
an angular speed of 7.2◦/s (rotating a full circle every 50 seconds). To generate different levels
of motion blur, for each object category and instance, we use the smartphone to record a short
video at each of the six views at 120fps. Then, we synthesize three different motion blur levels by
adjusting the exposure time of the camera. Specifically, following Equation (1), we approximate
three exposure times of 0.1s, 0.125s, and 0.2s by accumulating 12, 16, and 24 successive image
frames in the 120fps video. We fix the distance between the rotating camera and the stationary
object at 60cm to make the object occupy approximately one-ninth of the total area of the image.
We collect 6 × 6 × 6 × 3 = 648 Motion blur images in total.
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Table 2. Summary of the RMVMDD Dataset

Pristine image set

Object categories 6
Number of views 6
Size of object in image 3
Number of instances 6

Total pristine images 6 × 6 × 3 × 6 = 648

Single distortion image set
Types of distortion 3
Distortion levels 3

Total single-distortion images 6 × 6 × 6 × 3 × 3 = 1,944

Multiple distortion image set
Types of combination 4
Distortion levels 3

Total multi-distortion images 6 × 6 × 6 × 4 × 3 = 2,592

Total images 5,184

It has 5,184 images in total, including 648 pristine images, 1,944 single-distortion

images, and 2,592 multiple-distortion images.

Fig. 4. Examples of the pristine images that are collected in our RMVMDD dataset.

Gaussian blur image set: To generate three different levels of Gaussian blur, following Equa-
tion (2), we adjust the camera focal length, f , to 10cm, 12cm, and 15cm, respectively, while having
the other three parameters L, D, and A fixed. The distance between the camera and object is ap-
proximately 60cm such that the object occupies one-ninth of the total area of the image. We collect
6 × 6 × 6 × 3 = 648 Gaussian blur images in total.

Noise image set: We use the smartphone in a dark room (with 7lux) and set the ISO value of
the camera to 400, 800, and 1600, respectively, to generate images with three different levels of
noise. As the ISO value may also affect the image brightness, to have a constant image brightness,
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we manually adjust the shutter speed for exposure compensation [54] for different ISO values. We
collect 6 × 6 × 6 × 3 = 648 Noise images in total.

Multi-distortion image sets: We also collect images that contain multiple distortions. Specif-
ically, the three image distortions lead to four multi-distortion combinations: Noise + Motion blur,
Noise + Gaussian blur, Motion blur + Gaussian blur, and Noise + Motion blur + Gaussian blur. For
each of the combinations, three different distortion levels are considered. Following the methods
used in generating single-distortion images, we collect the multi-distortion images by adjusting
the corresponding parameters during the image capturing. For instance, to collect images with “a
low-level of Noise + Motion blur,” we set the ISO value to 400 and camera exposure time of 0.1s.
In total, we collect 6 × 6 × 6 × 4 × 3 = 2,592 multi-distortion images.

6 CYCLEGAN-BASED IMAGE DISTORTION AUGMENTATION

To ensure robustness against image distortion, a large volume of distorted images is required to
train the DNNs. Below, we introduce our CycleGAN-based image distortion augmentation.

6.1 CycleGAN for Image Distortion Augmentation

Our goal is to synthesize distorted images from pristine images, which are much easier to col-
lect. We formulate this as an unpaired image-to-image translation problem, that is: translate a
pristine image to a distorted image in the absence of paired training examples. To achieve this, we
leverage the CycleGAN model [42], which has been widely used to address domain adaptation in
image-based [42], motion-signal-based [64], and acoustic-signal-based [65] sensing and recogni-
tion. Formally, we assume that the pristine images are sampled from domain A with distribution
PA, while images that contain a single type of distortion (i.e., Motion blur, Gaussian blur, or Noise)
are sampled from domain B with distribution PB , and PA � PB . We denote a pristine image as
x ∼ PA and the distorted image as y ∼ PB . For each pair of “pristine-to-distortion” translation
(we have three pairs of translation correspond to the three types of image distortion considered
in this article), our goal is to learn a set of two bijective mapping functions, GAB : A → B and
GBA : B → A, between domains A and B, given training samples {xi }Ni=1 and {yj }Mj=1. Specifically,

in this work, {xi }Ni=1 is the pristine image set collected in Section 5, whereas {yj }Mj=1 is the motion

blur, the Gaussian blur, or the Noise image set given the targeted distortion type.
Figure 5 shows the architecture of our CycleGAN model, which consists of two bijective genera-

tors (mapping functions),GAB andGBA, and two corresponding discriminators (adversaries),DA and
DB . The generator GAB ensures the synthesized image, ŷ = GAB (x ),x ∼ PA, is indistinguishable
from the real distorted image y ∼ PB by the discriminator DB that is specifically trained to dif-
ferentiate ŷ from y. Symmetrically, generator GBA ensures the output x̂ = GBA (y),y ∼ PB cannot
be distinguished from x ∼ PA by its adversary DA. Moreover, to maintain the cycle consistency
of the image translation, CycleGAN ensures that the outputs of the two generators are reversible,
such that GBA (GAB (x )) ≈ x and GAB (GBA (y)) ≈ y; e.g., if we translate an image from pristine to
Motion blur, and then translate it back from Motion blur to pristine, we should obtain the same
pristine image.

6.2 CycleGAN Implementation

6.2.1 Objective Function. Our objective function is composed of three loss terms: the least
square adversarial loss [46, 66], the cycle consistency loss [42, 66, 67], and the identity loss [68].
For generators GAB and GBA and discriminators DB and DA, we can define the three loss terms as
follows:
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Fig. 5. CycleGAN network that consists of two generators (GAB and GBA) and two discriminators (DA and
DB ). Notation A indicates the domain of the pristine image; B refers to the domain of a specific type of
distorted images.

(1) Least square adversarial loss: For GAB and DB , the corresponding adversarial loss mea-
sures how distinguishable the synthesized image ŷ = GAB (x ),x ∼ PA is from the real imagey ∼ PB ,
and is defined as

Llsadv (GAB ) = Ex∼PA
[(DB (GAB (x )) − 1)2]. (3)

The smaller the Llsadv (GAB ), the better the performance of generatorGAB . Similarly, we can have
the corresponding adversarial loss for GBA and DA as

Llsadv (GBA) = Ey∼PB
[(DA (GBA (y)) − 1)2]. (4)

We use the least square loss here as it has shown better stability during training [66].
(2) Cycle consistency loss: It measures the difference between the original image x ∼ PA and

reconstructed imageGBA (GAB (x )) and enforces the cycle consistency between the two generators,
i.e., GBA (GAB (x )) ≈ x . The cycle consistency loss for GAB is defined as

Lcycle (GAB ) = Ex∼PA
[‖GBA (GAB (x )) − x ‖L1 ]. (5)

Similarly, for GBA, we have

Lcycle (GBA) = Ey∼PB
[‖GAB (GBA (y)) − y‖L1 ]. (6)

(3) Identity loss: To preserve the color composition between the synthesized and original im-
ages, we adopt the identity loss [68] to regularize the generator, such that it can generate identical
images when real images from the target domain are used as the input. The identity loss is defined
as

Lidentity (GAB ,GBA) = Ey∼PA
[‖GAB (y) − y‖L1 ] + Ex∼PB

[‖GBA (x ) − x ‖L1 ]. (7)

Overall objective: The final objective function for training the two generators is the sum of the
three loss terms:

L (GAB ,GBA) = Llsadv (GAB ) + Llsadv (GBA)

+ λ1Lcycle (GAB ) + λ1Lcycle (GBA)

+ λ2Lidentity (GAB ,GBA),

(8)

where λ1, λ2 ≥ 0 are two hyper-parameters that control the contribution of the cycle consistency
loss and identity loss to the overall objective. The objective function used in training the two
discriminators contains only the least square adversarial loss and is defined as

L (DA,DB ) = Ex∼PA
[(DB (GAB (x )))2]

+ Ey∼PB
[(DB (y) − 1)2]

+ Ey∼PB
[(DA (GBA (y)))2]

+ Ex∼PA
[(DA (x ) − 1)2].

(9)

ACM Transactions on Sensor Networks, Vol. 18, No. 1, Article 9. Publication date: September 2021.



Edge-assisted Collaborative Image Recognition for Mobile Augmented Reality 9:15

Finally, our CycleGAN is trained by solving

arg min
GAB,GBA

arg min
DA,DB

[L (GAB ,GBA) + L (DA,DB )]. (10)

6.2.2 Implementation. In this work, we are interested in synthesizing three types of distorted
images using pristine images as input. We formulate this task as translating original images from
the pristine domain to one of the three distortion domains (i.e., Motion blur, Gaussian blur, and Noise).
Hereafter, instead of using the notation GAB , we specifically use the notation GP→MBL , GP→GBL ,
and GP→N to denote the generator of “pristine-to-motion-blur,” “pristine-to-Gaussian-blur,” and
“pristine-to-noise,” respectively.

We implement the generators by following the network design proposed by Johnson et al. [69],
which has shown great performance in image transformation [42]. Specifically, the network con-
tains two stride-2 convolutional layers, nine residual blocks [70], and two stride- 1

2 convolutional
layers. For the two discriminators, we adopt 70 × 70 PatchGAN [71], which determines whether
the 70× 70 overlapping image patches are real or synthesized (fake). By restricting the discrimina-
tor’s attention in local image patches, PatchGAN improves the quality of the synthesized images
and prevents them from lacking high-frequency features [71].

We use the corresponding image sets (one pristine and three distorted image sets) collected in
the RMVMDD dataset for training and employ the Adam optimizer [72] with a learning rate of
0.0002 during the training. For GP→MBL and GP→GBL , we set the values of the two parameters, λ1

and λ2, to 10. For GP→N , we set λ2 to 25 to regularize the brightness of the synthesized images, as
the brightness of the noise images is relatively low.

7 DISTORTION-TOLERANT RECOGNIZER

7.1 Image Distortion Classifier

Different types of distortion have distinct impacts on the frequency domain features of the original
images. For instance, as discussed in Section 3.1, Gaussian blur can be considered as the process of
mapping a sharp pixel point into a blurred spot on the image plane. This is equivalent to applying
a circularly shaped low-pass filter on the image, which filters out the high-frequency components
in the original image. Similarly, motion blur can be considered as a directional low-pass filter that
smooths the original image along the direction of the motion [8]. Lastly, the Fourier transform
of noise is approximately constant over the entire frequency domain, whereas the original image
contains mostly low-frequency information [73]. Hence, an image with severe noise will have
higher signal energy in the high-frequency components theoretically.

Figure 6 gives the Fourier spectrum of images containing different distortions. The spectrum is
shifted such that the DC value is displayed in the center of the image. For any point in the spectrum,
the farther away it is from the center, the higher is its corresponding frequency. The brightness
of the point in the spectrum indicates the energy of the corresponding frequency component in
the image. We can see that the pristine image contains components of all frequencies, and most
of the high-energy components are in the lower-frequency domain. Differently, Gaussian blur
heavily removes the high-frequency components of the image in all directions. Similarly, motion
blur removes the high-frequency components in the image along the direction of motion. Thus,
we can see a strong diagonal line that is perpendicular to the direction of the motion blur. The
thinner the line, the higher the motion blur level, and vice versa. Lastly, because noise often occurs
in low-illumination conditions, although noise will introduce irregular pixels, the reduction in
brightness of the picture caused by low illumination will weaken the high-frequency components
of the picture in all directions. We leverage these distinct frequency domain patterns for distortion
classification.
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Fig. 6. The Fourier spectrum of images containing different distortions. Different distortions have distinct
impacts on the frequency domain features of the images. The patterns are independent of the semantic
content in the image.

Fig. 7. The pipeline of the image distortion classification. The Fourier spectrum is used as the input of the
distortion classifier for training and classification.

Table 3. The Architecture of the Image Distortion Classifier

Layer Size In Size Out Filter

conv1 224 × 224 × 3 111 × 111 × 32 3 × 3, 2
conv2 111 × 111 × 32 109 × 109 × 16 3 × 3, 1
pool1 109 × 109 × 16 54 × 54 × 16 2 × 2, 2
conv3 54 × 54 × 16 54 × 54 × 1 1 × 1, 1
pool2 54 × 54 × 1 27 × 27 × 1 2 × 2, 2
flatten 27 × 27 × 1 729

fc 729 4

The parameters in the Size In and Size Out columns refer to the

height × width × depth.

Figure 7 shows the pipeline of the image distortion classification. First, we convert the origi-
nal RGB image into grayscale using the standard Rec. 601 luma coding method [74]. Then, we
apply the two-dimensional discrete Fourier transform (DFT) to obtain the Fourier spectrum of
the grayscale image and shift the zero-frequency component to the center of the spectrum. The
centralized spectrum is used as the input for the distortion classifier. As shown in Table 3, the
distortion classifier adopts a shallow CNN architecture, which consists of three convolutional lay-
ers (conv1, conv2, and conv3), two pooling layers (pool1 and pool2), one flatten layer, and one fully
connected layer (fc). This shallow design avoids over-fitting and ensures low computation latency.
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7.2 Recognition Experts

Based on the output of the distortion classifier, one of the four dedicated recognition experts is
selected for the image recognition. We consider either MobileNetV2 [5] or the VGG16 [56] as the
base DNN model for the recognition experts. We initialize all the CNN layers with the values
trained on the full ImageNet dataset. Then, to fine-tune the experts on a target dataset, we add a
fully connected layer as the last layer with the number of units corresponding to the number of
classes in the target dataset. In the fine-tuning process, we first train the pristine expert, ExpertP ,
using pristine images in the target dataset (RMVMDD collected in Section 5). Then, the three dis-
tortion experts, i.e., motion blur expert ExpertMBL , Gaussian blur expert ExpertGBL , and Noise
expert ExpertN , are initialized with the weights of ExpertP and fine-tuned using the correspond-
ing distortion images. During the fine-tuning, half of the images in the mini-batch are pristine and
the other half are distorted images synthesized by using the CycleGAN model introduced in Sec-
tion 6. The augmented distorted images contain distortion on all three severity levels. This ensures
better robustness against variations in the distortion level (i.e., it helps in minimizing the effect of
domain-induced changes in feature distribution [17]) and helps the CNNs to learn features from
both pristine and distorted images [75].

8 COLLABORATIVE MULTI-VIEW IMAGE RECOGNITION

Mobile users that are in close proximity usually exhibit a strong correlation in both device usage
and spatial-temporal contexts [22, 35]. This is especially true in the mobile AR scenario where
the requested image recognition tasks are usually correlated temporally (e.g., consecutive image
frames from the same user [6, 7, 36]) and spatially (e.g., different users aim to recognize the same
object [12, 22]). For instance, in a museum, visitors that are in close proximity may use the AR ap-
plication to recognize and augment information of the same artwork. Although images are taken
from different positions or at different times, they contain the same object [22, 76]. CollabAR ex-
ploits the spatial-temporal correlation among the images to enable collaborative multi-view image
recognition.

8.1 Correlated Image Lookup

8.1.1 Anchor-based Pose Estimation. To identify the spatially and temporally correlated images,
CollabAR exploits Google ARCore [25] to estimate the pose (the position and orientation) of the
device when the image was taken. When the user is moving in space, ARCore leverages a process
called concurrent odometry and mapping (COM), which aggregates the image frames taken
by the camera and the inertial data captured by the device’s motion sensors to simultaneously
estimate the orientation and location of the mobile device relative to the world.

Specifically, CollabAR leverages the Cloud anchors [77] provided by ARCore as the references
for pose estimation. An anchor is a virtual identifier that describes a fixed pose in the physical
space. The numerical pose estimation of the anchor is updated by the ARCore over time, which
makes the anchor a stable pose reference against cumulative tracking errors [3, 78]. In our design,
anchors are created and managed by the administrator in advance. When running the application,
anchors in the space can be resolved by the users to establish a common spatial reference among
them. In general, an anchor should be placed at the location of the object of interest. However, to
ensure low system latency in resolving the anchor and provide better user experience, we take two
practical factors into account when deciding the placement of the anchor in the space. First, when
the object of interest has reflective surfaces or surfaces without visual features (e.g., shiny objects
or white walls), we place the anchors at locations where the background scene contains easily
distinguishable visual features. Second, we also consider the possible viewing positions and angles
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Fig. 8. An example of correlated image lookup. Images of the same artwork are taken from different poses,
view1 and view2, at different times, t1 and t2. The anchors in the image views are used to check the spatial
correlation, and the timestamps are used to check the temporal correlation.

of the potential users and select locations that make the anchors more likely to appear in the users’
view. The Google Cloud Anchor service can resolve up to 20 cloud anchors simultaneously, and
each anchor can cover a 4m × 4m area [77, 79]. As we are only using the anchors to achieve coarse-
grained pose estimation, 20 cloud anchors can cover an area up to 320m2 to support the mobility
of the users. Lastly, although the resolving time increases with the number of anchors placed, the
average time spent in resolving a single anchor is only 1 second based on our measurement and
1.5 seconds according to previous work [30]. Lastly, since CollabAR only requires coarse-grained
spatial estimation, the pose estimation accuracy of Google ARCore does not affect its performance
in identifying the spatial correlation among multiple users.

As a toy example shown in Figure 8, three cloud anchors have been placed in space to identify
three different poses. When the user is taking an image of the artwork from view1 at time t1, the
anchors in the camera view will be sent to the edge and associated with the timestamp t1. As
shown previously in Figure 3, the anchors and the timestamps are stored in the anchor-time cache
in the format of < imageID, {anchorIDs}, timestamps >. When a new image, imaдe2, is taken at
time t2 from view2 either by the same or by a different user, the spatial-temporal image lookup
module searches the anchor-time cache to find previous images that are spatially and temporally
correlated with the new one.

8.1.2 Spatial-temporal Image Lookup. For any image in the cache, imaдeCached , it is considered
as spatially correlated with the new image, imaдeN ew , if the images satisfy

{anchorIDs}New ∩ {anchorIDs}Cached � ∅, (11)

where {anchorIDs}New and {anchorIDs}Cached are the sets of anchors that appeared in views of
imaдeN ew and imaдeCached , respectively. If two images contain the same anchor in their views,
they are spatially correlated. For instance, in Figure 8, imaдe1 contains the same anchor, anchor#2,
that also appears in the view of imaдe2. Thus, they are spatially correlated. Similarly, the cached
image is considered as temporally correlated to the new image if the images satisfy

Δt = tN ew − tCached and Δt � Tfresh, (12)

where tN ew and tCached are the timestamps of the new and cached images, respectively. Δt is the
freshness of imaдeCached with respect to imaдeN ew . If the freshness Δt is within the freshness
threshold, Tfresh, imaдeCached is considered as temporally correlated with imaдeN ew . Note that
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Fig. 9. The architecture of Auxiliary-assisted Multi-view Ensemble Learning (AMEL). Different base learners
(i.e., different recognition experts) are used for the recognition. The outputs of the previous images, i.e., the
probability vectors, are stored in the results cache. During aggregation, the probability vector of the current
image, Pm , and the corresponding auxiliary information, Sm , are combined with that of the m − 1 spatial-
temporal correlated images to improve the overall accuracy. The set of auxiliary features, (S1, . . . ,Sm ), is
used to assist the multi-view ensembler in discriminating the confidence of them inference results.

the setting of the freshness threshold Tfresh varies with the application scenarios. In cases where
the object at a given position changes frequently, e.g., animals in the zoo, we should use a lower
freshness threshold. Differently, in scenarios where the positions of the objects do not change very
often, e.g., exhibited items in a museum or large appliances in a building, a higher freshness thresh-
old can be tolerated. An image in the anchor-time cache is considered as spatially and temporally
correlated to the new image if they satisfy Equations (11) and (12) at the same time. The IDs of the
identified correlated images are forwarded to the multi-view ensembler for aggregation.

8.2 Auxiliary-assisted Multi-view Ensemble Learning

In image recognition, ensembling the results of multiple base classifiers is a widely used approach
to improve the overall recognition accuracy [38, 80]. Following this trend, CollabAR aggregates the
recognition results of the spatially and temporally correlated images to improve the recognition
accuracy of the current image.

As shown previously in Figure 3, using the image IDs identified by the correlated image
lookup module as the key, the multi-view ensembler retrieves the results of the correlated im-
ages from the results cache. This is done by retrieving any stored records in the result cache, i.e.,
< imageID, inferenceResult >, with imageID matches to the identified images. As shown in Fig-
ure 9, assuming thatm−1 correlated images are identified, the inference result of the current image
(the probability vector Pm ) is aggregated with that of them− 1 correlated images (P1, . . . ,Pm−1)
by the ensembler. However, given the heterogeneity of them images (i.e., images are captured from
different angles, suffer from different distortions with different distortion levels), the images lead
to unequal recognition performance. To quantify their performance and help the ensembler in ag-
gregating the results dynamically, auxiliary features [39, 81] can be used. In this work, we propose
to use the normalized entropy as the auxiliary feature. The normalized entropySk measures the
recognition quality and the confidence of the distortion-tolerant image recognizer on the recogni-
tion of the kth image instance. More specifically, Sk can be calculated from the probability vector
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as follows:

Sk (Pk ) = −
|C |∑
i=1

pi logpi

log |C| , (13)

where Pk = {p1, . . . ,p |C | } is the probability vector of the kth base learner on the image instance,
and |C| is the number of object categories in the dataset. The value of normalized entropy is
between 0 and 1. A value close to 0 indicates that the distortion-tolerant image recognizer is con-
fident about its recognition on the image instance, whereas a value close to 1 means that it is not
confident.

In AMEL, the set of normalized entropy, (S1, . . . ,Sm ), is used as the weight in averaging hetero-
geneous outputs of the spatial-temporal correlated images. Specifically, given the current image
and the m − 1 correlated images, the final aggregated recognition output P can be expressed as

P = N
( ∑m

i=1 (1−Si )Pi

)
, where Pi is the probability vector of the ith image, (1−Si ) is the associ-

ated weight, and N is the normalization operator that scales the entries in the aggregated vector
to the range of [0, 1]. This allows AMEL to dynamically adjust the weights in aggregating the
m images during the classification. Overall, as the images result in unequal recognition accuracy,
AMEL is more robust against this variance than standard averaging methods, which would assign
equal weights to multi-view images during the aggregation [37].

Discussion. Note that CollabAR supports multi-user collaboration in both asynchronous and
synchronous manners. It can also aggregate the consecutive image frames (e.g., image frames in
the video) captured by a single user to improve the recognition accuracy, as long as the images
are spatially and temporally correlated. There are a number of potential application scenarios in
which multiple users are co-located in space but not in time. For example, members of maintenance,
construction [82], and cleaning crews [83] could leave virtual annotations for members in the next
inspection. These virtual annotations are used to highlight specific areas or objects, which need
to be checked, repaired, or sanitized [82]. Similarly, different product, automotive, or aerospace
designers and engineers working on the same project may leave feedback and suggestions when
they visit a studio or a factory floor [34]. These use cases are potential examples of how CollabAR
can be used for asynchronous collaboration.

In general, asynchronous collaboration that employs image recognition to generate virtual con-
tent is advantageous because it does not require the printing of fiducial markers, and it does not
damage the aesthetic quality of the space in which it is used. Furthermore, the use cases listed
above may involve challenging visual conditions and image distortion. For instance, industrial
or warehouse settings often contain dark environments, introducing Gaussian noise; busy users
with many spaces to check may be moving quickly, introducing motion blur. As such, a distortion-
tolerant system is required to support swift and accurate recognition in practical applications.

9 EVALUATION

Below, we provide a comprehensive evaluation of CollabAR. We examine the overall accuracy of
CollabAR in image recognition as well as its end-to-end system latency and memory usage.

9.1 System Implementation

The client of CollabAR is implemented on Android smartphones. We leverage the Google ARCore
SDK to realize the anchor-based pose estimation module introduced in Section 8.1.1. The edge
server is a desktop with an Intel i7-8700k CPU and a Nvidia GTX 1080 GPU. We realize the server
of CollabAR using the Python Flask framework. The distortion-tolerant image recognizer and the
multi-view ensembler are implemented using Keras 2.3 on top of the TensorFlow 2.0 framework.
The client and the server communicate through the HTTP protocol.
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Fig. 10. Confusion matrix and accuracy of the image distortion classifier on different datasets: (a) MobileDis-
tortion and (b) RMVMDD. On average, the distortion classifier achieves 95.5% and 90.3% accuracy on the
two datasets, respectively.

9.2 Distortion Classifier Performance

We first evaluate the performance of the image distortion classifier using the MobileDistortion
(collected in Section 3.3) and RMVMDD (collected in Section 5) datasets. We perform threefold
cross-validation on each of the two datasets.

The confusion matrix and the accuracy of the image distortion classifier are shown in Figure 10.
The classifier achieves 95.5% and 90.3% accuracy on the MobileDistortion, and RMVMDD datasets,
respectively. For MobileDistortion, most of the classification errors happen in differentiating MBL
and GBL. As shown in Figure 10(a), 15.3% of the GBL distorted images are misclassified as MBL.
This is due to the similarity between these two distortions. Specifically, MBL and GBL have sim-
ilar impact on the Fourier spectrum and result in misclassification when the direction of the mo-
tion blur is parallel or perpendicular to the central horizontal line of the image. However, for the
RMVMDD dataset, as shown in Figure 10(b), the classification error between MBL and GBL is less
than 1%. This is because we only consider horizontal motion blur during the data collection. Specif-
ically, as shown in Figure 6, we can see a strong vertical line in the Fourier spectrum for images
that are containing GBL. This distinct pattern helps the classifier to differentiate MBL and GBL. In
addition, we also notice that when the noise level is low, i.e., images in the RMVMDD dataset that
are captured when the ISO value equals 400, the distorted images are sometimes misclassified as
pristine images. This is intuitive, as the impact of the image distortion on the Fourier spectrum is
limited when the distortion level is low and, thus, results in similar spectrum feature as pristine im-
ages. Overall, on the two image datasets, the distortion classifier achieves 93% accuracy on average.

9.3 Image Recognition Accuracy

Below, we evaluate the image recognition accuracy of CollabAR using the RMVMDD dataset. We
first examine the performance of the distortion-tolerant image recognizer, followed by the evalu-
ation of CollabAR in multi-view and multiple distortions scenarios.

9.3.1 Performance of Distortion-tolerant Image Recognizer. We examine the accuracy of both
MobileNet-based and VGG-based implementations. We consider the single-distortion scenario and
gradually increase the distortion level to investigate its impact on the recognition accuracy.

Setup. We consider four baselines in this experiment: (1) We use the pristine images to train
the Pristine expert and use it for the image recognition without considering distortion-specific
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Fig. 11. Performance of the distortion-tolerant image recognizer given different distortions, distortion levels,
DNN architectures, and baseline methods.

recognition. This represents the worst case and shows how different image distortions may affect
the recognition performance. (2) We apply different image restoration methods to recover the dis-
torted images. Specifically, we apply the non-local means denoising [84] for noise filtering, the
scale-iterative up-scaling network [85] to restore images from Gaussian blur, and the image de-
convolution CNN [86] to recover images from motion blur. Then, the restored images are used as
the inputs to the Pristine expert for recognition. This method investigates the recognition perfor-
mance when image restoration methods are used to address the image distortions. (3) We apply
mathematical models to synthesize distorted images. Specifically, following our previous work [1],
we use the zero-mean additive Gaussian noise model for Noise [11], the non-uniform motion blur
kernel for Motion blur [18], and the two-dimensional Gaussian kernel for Gaussian blur [19]. The
augmented images are used to train the three distortion-specific recognition experts. This method
investigates the recognition performance when mathematical-model-based image augmentation
is used. (4) Lastly, we leverage the CycleGAN-based image augmentation to synthesize distorted
images and train the three recognition experts. The results are shown in Figure 11. We have the
following major observations.

First, on average, in terms of three distortion types, the VGG16-based implementation outper-
forms the MobileNetV2-based one by only 2% on average. Although VGG16 is deeper and has
more convolutional layers, MobileNetV2 takes advantages of the depth-wise separable convolu-
tion as an efficient building block to ensure more efficient image feature extraction and uses a
linear bottleneck for better feature transformation [5]. One exception is the Motion blur; as shown
in Figures 11(a) and 11(b), VGG16 is more robust against motion blur and achieves higher accuracy
than MobileNetV2.

Second, the CycleGAN -based data augmentation significantly improves the robustness of the
distortion-tolerant image recognizers against the image distortions. Taking the MobileNetV2-
based implementation as an example, the CycleGAN -based method improves the accuracy of the
Pristine expert by 17.9%, 21.2%, and 13.6% on average over the three distortion levels for Motion
blur, Gaussian blur, and Noise, respectively. Similarly, when comparing with the Math Model-based
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Fig. 12. Feature maps generated by different convolutional layers of the MobileNetV2: rows from top to bot-
tom correspond to raw image input and feature map generated from the first (Conv1), second (Conv2), third
(Conv3), and the fourth (Con4) convolutional layer; columns from left to right correspond to Pristine image,
Gaussian blur image, Gaussian blur image recovered by deconvolution, Noise image, Noise image recovered
by denoising, Motion blur image, and Motion blur image recovered by deblurring. Overall, image restora-
tion methods introduce unexpected “perturbations” to the restored images that can reduce the recognition
performance of the DNN.

data augmentation, the CycleGAN -based method improves the accuracy by 5.2%, 18.7%, and 15.1%
on average over the distortion levels for Motion blur, Gaussian blur, and Noise, respectively.

Third, although image restoration methods can reduce distortions, the restored images are
friendly only to human eyes but contain unexpected “perturbations” that will hurt the performance
of the DNN [87]. As shown in Figure 11, we can observe that, in most of the examined scenarios,
the image restoration methods (Deblurring, Deconvolution, or Denoising) achieve the lowest recog-
nition accuracy. To illustrate, we visualize the intermediate feature maps generated by the lower
convolutional layers of MobileNetV2, as lower layers of CNN contain color, texture, and low-level
image features [88]. As shown in Figure 12, we plot the feature maps generated by the first to the
fourth convolutional layers (after the activation operation) of the MobileNetV2. For better visual
effects, each of the feature maps is averaged over the three color-specific feature maps in the RGB
channels and resized using the bi-cubic interpolation to have the same size as the input image.
The bright areas in these feature maps represent extracted feature points that have high activation
values, which will have a high impact on the final classification results (as they are more likely to
be maintained in the final layer).

We can notice that the deconvolution method introduces additional perturbations in feature maps
of the restored images, while the denoising method removes the original low-level features in the
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Fig. 13. Feature maps generated by the first to the fourth convolutional layer of MobileNetV2 and VGG16
when taking the Motion blur image recovered by deblurring as the input.

restored images. Thus, both of them result in recognition accuracy that is worse than the distorted
images (Gaussian blur or Noise images). Specifically, as shown in Figure 12, compared to the Pris-
tine image, the image restored by the deconvolution method contains many unexpected textures
with high activation values in all four feature maps. Similarly, the denoising method removes the
low-level features in the original image (i.e., we can notice some sparse feature points in the back-
ground of the pristine image, but they are removed in the denoised image). As a consequence,
when using the Pristine expert for the recognition, the deconvolution and denoising methods re-
sult in poor recognition accuracy. An exception is the Motion blur. The image restored by the
deblurring method captures the low-level features of the object well without distortions: lines and
texture of the shoes are well maintained in the four feature maps. Overall, the abilities of different
restoration methods in image recovering and in maintaining the low-level image features lead to
different recognition performance.

Lastly, from Figures 11(a) and 11(b), we can also notice that the deblurring method achieves
a higher accuracy with MobileNetV2-based implementation than with the VGG16-based one. To
explain, we compare the feature maps generated by MobileNetV2 and VGG16 when taking the
Motion blur image recovered by the deblurring method as the input. As shown in Figure 13,
MobileNetV2 exhibits a better capability in maintaining the texture features than VGG16. Specif-
ically, the texture details of the shoes are maintained better in the feature maps generated by
MobileNetV2 than that generated by VGG16. By contrast, VGG16 shows a better capability in
extracting the shapes of the objects, i.e., higher activation values on edges of the shoes and the
table, but lower activation values on the texture details. Moreover, since we have pre-trained both
MobileNetV2 and VGG16 on the ImageNet dataset, they are strongly biased towards recognizing
texture features rather than shapes of the objects [89]. Thus, as a combined effect, due to the loss
of texture feature, VGG16 achieves a lower recognition accuracy than MobileNetV2 for Motion
blur.

9.3.2 Performance of Multi-view Collaboration. Below, we evaluate the performance of Col-
labAR in the multi-view scenario where spatially and temporally correlated images are aggregated
to improve the single-view accuracy. Moreover, we investigate how multi-view collaboration can
help in multiple distortions cases.

Setup. We focus on the MobileNetV2-based implementation for the recognition experts, as it
demonstrates a similar accuracy to the VGG16-based one but a lower computation latency (details
are given in Section 9.4). To microbenchmark the end-to-end system design, we evaluate CollabAR
with two design options: (1) with and without the image distortion classifier and (2) with and
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Fig. 14. Accuracy of CollabAR in the multi-view single-distortion scenario.

Fig. 15. Accuracy in multi-view multiple-distortions scenario. With six views aggregated, the accuracy can
improve by 9.3% to 19.4% given different distortion combinations.

without the auxiliary feature for the multi-view ensembler. We consider up to six views to be
aggregated for collaborative recognition.

Multi-view Single-distortion: in the single-distortion case, the image of each view contains
one of the three distortions. We set the image distortion to level 3 to evaluate CollabAR with the
most severe distortions. The performance is shown in Figure 14. First, with the image distortion
classifier, CollabAR can correctly select the recognition expert that is dedicated to the examined
distortion image and can significantly improve the recognition accuracy. Given different number
of views aggregated, CollabAR with the distortion classifier can improve the overall accuracy by
18% to 23% when compared to the case without a distortion classifier. Second, with the auxiliary
feature, CollabAR can dynamically adjust the weights in multi-view aggregation and can improve
the overall accuracy up to 7%. Lastly, the accuracy increases with the number of aggregated views.
In the case where CollabAR is incorporated with both the distortion classifier and the auxiliary
feature, the overall accuracy can be improved by 12% with six views aggregated.

Multi-view Multi-distortion: Below, we examine CollabAR, with both the distortion classifier
and the auxiliary feature, in the multiple-distortions scenario. We consider four multiple distortion
combinations: MBL+GBL, MBL+N, GBL+N, and MBL+GBL+N. Figure 15 shows the performance
of CollabAR given different distortion combinations in the testing image. The distortion is set to a
modest level (i.e., level 2 distortion for MBL, GBL, and N). First, we observe a significant drop in the
accuracy compared to that in the single-distortion scenario. This is expected: since the dedicated
recognition experts are fine-tuned on images with specific types of distortions, multiple distortions
will cause a mismatch in the feature distribution between the corrupted testing images and the
dedicated recognition experts, and will thus result in a performance drop. Fortunately, the accuracy
improves with the number of views aggregated. For different combinations of image distortions,
the accuracy can improve by 9.3% to 19.4% given different distortion combinations. Figure 16 shows
the accuracy improvements of the multi-view aggregation given different distortion combinations
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Fig. 16. Accuracy improvement of CollabAR in multi-view multi-distortion scenario given different distortion
combinations and distortion levels. With six views aggregated, the overall accuracy is improved by 14.9% on
average across different scenarios.

Fig. 17. Performance of CollabAR with and without the auxiliary feature. The images contain multiple dis-
tortions and are diverse in the distortion level. With the auxiliary feature, we can always achieve a higher
accuracy.

and distortion levels. Overall, with six views aggregated, the overall recognition accuracy can be
improved by 14.9% on average.

9.3.3 Advantages of AMEL. Below, we investigate the performance of CollabAR in heteroge-
neous multi-view multiple distortions scenarios, where images from different views are diverse in
distortion type and distortion level. We define a “good view” if the image is pristine, and we define a
“bad view” if the image contains high distortion levels (i.e., level 3 distortion for MBL, GBL, and N).
We also demonstrate the advantages of the proposed auxiliary-assisted multi-view ensemble over
the conventional ensemble method without the auxiliary feature. Figure 17 compares the perfor-
mance of CollabAR with and without the auxiliary feature. CollabAR can always achieve a higher
accuracy with the auxiliary feature. Specifically, the improvement is most pronounced when there
are more “bad views” than “good views” in the multi-view aggregation (e.g., “1g2b,” “1g3b,” “2g3b,”
and “2g4b,” where “1g2b” refers to “one good view and two bad views”). For instance, as shown in
Figure 17(d), in a scenario where the image contains three types of distortion, the auxiliary feature
can improve the performance by 8% on average and up to 13% in a more diverse case (“1g3b”). Over-
all, CollabAR achieves 80% and 76% accuracy on average, with and without the auxiliary feature,
respectively.

9.4 System Profiling

Below, we present a comprehensive profiling of CollabAR in terms of end-to-end system latency
and system memory usage. We consider two deployments of CollabAR: (1) the whole system is
deployed on the mobile client and (2) the edge-assisted design in which the computation-intensive
recognition pipeline is deployed on the server. We implement CollabAR on three different plat-
forms. Specifically, we use a desktop equipped with an Intel i7-9700k CPU and an Nvidia RTX
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Table 4. Specifications of the Three Commodity Platforms

Platform
CPU

RAM
GPU

Cores Speed Cores GFLOPS Speed

Desktop 8 3.6GHz 32GB 1,920 6,451 1.68GHz

Nokia 7.1 8 1.8GHz 3GB 1 184.3 720MHz

Pixel 2 XL 8 2.35GHz 4GB 1 567 710MHz

Table 5. The End-to-end Latency (in ms) When the Two Mobile Devices Offload
the Image to the Edge Server for Inference

System Implementation
Mobile Platform

Nokia 7.1 Pixel 2 XL

Distortion Detector + AEML (MobileNetV2) 18.2 20.4

Distortion Detector + AEML (VGG) 19.9 19.8

The server performs inference on the GPU. The results are averaged over 200 trials.

2060 GPU as the edge server. In addition, we consider two commodity smartphones, Nokia 7.1 and
Google Pixel 2 XL, to represent middle-range mobile clients. The two smartphones are embedded
with the Qualcomm Snapdragon 636 and 835 mobile platforms, respectively, which leads to het-
erogeneity in both computation and communication performance. The hardware specifications of
the three platforms are given in Table 4. We leverage the TensorFlow Lite [90] as the framework
when implementing CollabAR on the smartphones. Note that we implement CollabAR on the edge
server using the TensorFlow 2.0, which makes it more efficient than the TensorFlow 1.0-based im-
plementation in our previous conference version [1].

9.4.1 End-to-end System Latency. Below, we measure the end-to-end system latency of
CollabAR by following the processing pipeline shown in Figure 3. Specifically, we consider both
VGG16-based and MobileNetV2-based implementations of the AMEL image recognition compo-
nent. In our experiment setup, the mobile clients and the edge server are connected through a
single-hop Wi-Fi network using the 5GHz wireless channel. Note that the communication latency
is largely affected by the wireless network condition. Our measurement is conducted under mod-
est background traffic load. We run 200 trials of the end-to-end image recognition pipeline and
report the average time consumed. The results are shown in Table 5. Overall, for the two commod-
ity smartphones that we have examined, the edge-assisted design allows us to achieve more than
50fps continuous image recognition.

9.4.2 Memory Usage. We also measure the runtime memory usage of CollabAR when it is de-
ployed on different hardware platforms. We only report the memory that is allocated to CollabAR:
the memory usage before the loading of CollabAR is subtracted from the measurement. The major
memory usage is in loading the trained network model, as well as the input and output data of
different network layers. The results are shown in Table 6. For both types of implementation, the
overall GPU memory usage of CollabAR, including the distortion classifier and the four recogni-
tion experts, is well within the available memory of most commodity platforms.

10 CONCLUSION

In this article, we presented CollabAR, an edge-assisted collaborative image recognition system
that enables distortion-tolerant image recognition with imperceptible system latency for mobile
augmented reality. To achieve this goal, we propose distortion-tolerant image recognition to
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Table 6. The Runtime Memory Usage (in MB) when Running CollabAR on Three Hardware Platforms

System Implementation
Processing

Unit

Hardware Platform

Edge Server Nokia 7.1 Pixel 2 XL

Distortion Detector + AMEL (MobileNetV2)
CPU 107 23 23
GPU 1,815 76 85

Distortion Detector + AMEL (VGG16)
CPU 653 230 230
GPU 3,515 1,202 1,202

The results are averaged over 200 trials.

improve robustness against real-world image distortions, and collaborative multi-view image
recognition to improve the overall recognition accuracy. Moreover, as it is difficult to collect
a large-scale image distortion dataset, we propose a Cycle-Consistent Generative Adversarial
Network-based data augmentation method to synthesize realistic image distortion from a small-
scale multi-view multi-distortion dataset we collected. We implement the end-to-end system on
four different commodity devices and evaluate its performance on two multi-view image datasets.
Our evaluation demonstrates that CollabAR achieves over 85% recognition accuracy for images
with severe distortions while reducing the end-to-end system latency to as low as 18.2ms.
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