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Abstract—While serverless computing is increasingly popular,
its energy and power consumption behavior is hardly explored. In
this work, we perform a thorough characterization of the serverless
environment and observe that it poses a set of challenges not
effectively handled by existing energy-management schemes. Short
serverless functions execute in opaque virtualized sandboxes, are
idle for a large fraction of their invocation time, context switch
frequently, and are co-located in a highly dynamic manner with
many other functions of diverse properties. These features are a
radical shift from more traditional application environments and
require a new approach to manage energy and power.

Driven by these insights, we design EcoFaaS, the first energy
management framework for serverless environments. EcoFaaS
takes a user-provided end-to-end application Service Level
Objective (SLO). It then splits the SLO into per-function deadlines
that minimize the total energy consumption. Based on the
computed deadlines, EcoFaaS sets the optimal per-invocation core
frequency using a prediction algorithm. The algorithm performs a
fine-grained analysis of the execution time of each invocation, while
taking into account the specific invocation inputs. To maximize
efficiency, EcoFaaS splits the cores in a server into multiple Core
Pools, where all the cores in a pool run at the same frequency
and are controlled by a single scheduler. EcoFaaS dynamically
changes the sizes and frequencies of the pools based on the
current system state. We implement EcoFaaS on two open-source
serverless platforms (OpenWhisk and KNative) and evaluate it
using diverse serverless applications. Compared to state-of-the-art
energy-management systems, EcoFaaS reduces the total energy
consumption of serverless clusters by 42% while simultaneously
reducing the tail latency by 34.8%.

I. INTRODUCTION

Function-as-a-Service (FaaS) or serverless computing is
emerging as a popular cloud computing paradigm that provides
high developer productivity, fast on-demand scaling, and a pay-
as-you-go fine-grain billing model. Users upload their code and
the cloud provider secures all libraries, runtime environment,
and system services needed to run it. The basic execution unit
is a function, which runs in an ephemeral, stateless container
or micro virtual machine created and scheduled on demand. To
implement meaningful operations, serverless applications are
composed of multiple functions orchestrated into an application
workflow. Today, the serverless paradigm is offered by all major
cloud providers (e.g., [13], [47], [60], [86]) and its popularity
increases among cloud users [39].

However, serverless environments introduce a number of
performance overheads. Prior work addressed some of the
largest ones, such as lengthy startup latency [31], [43], [76],
[99], [101], [104], [109], expensive storage accesses [70],
[72], [75], [83], [98], [104], [106], [112], inter-function

communication [11], [64], [72], [82], [113], and inter-function
orchestration [40], [75], [105].

One aspect that has barely been examined is the energy
consumption of serverless environments. Substantial work has
shown the unique performance issues of serverless computing,
but how these issues translate into power/energy consumption
is unknown. Hence, a framework for energy management in
serverless systems is sorely needed. Advancing this area is
critical, as serverless services are an increasing fraction of
datacenter loads [29], [32], [95], and datacenters contribute
substantially to the world energy consumption [20], [84] and
carbon footprint [53], [54].

To address this shortcoming, this paper starts by performing
a thorough characterization of the energy consumption in
serverless environments. It shows that these environments pose
a set of challenges not met by the existing energy management
schemes designed for more traditional datacenter environments
with long-lived applications (e.g., [33], [34], [55], [58], [67],
[79], [91], [118]).

Specifically, serverless functions are highly sensitive to core
frequency—much more, e.g., than to the amount of memory
resources. However, because cloud providers have no visibility
into the performance requirements of user functions, they
always execute functions at the highest frequency, potentially
wasting substantial energy. Also, as applications are comprised
of multiple functions with different properties, it is hard for
users to reason about how different frequency settings for
individual functions affect total performance and energy.

In addition, many functions spend a considerable amount of
time waiting on remote function calls or accesses to remote
storage, both implemented as Remote Procedure Calls (RPCs).
Hence, cores need to frequently context switch between invoca-
tions of different functions. Further, these invocations may need
different optimal frequencies, but changing core frequency from
virtualized sandboxes incurs significant software overheads.
Finally, providers densely pack many functions with various
properties on a shared server, and the mix of such co-located
functions changes rapidly. Thus, the per-core frequency setting
that is optimal for the performance-energy trade-off at one
time may quickly become suboptimal.

Based on the insights of our characterization, we propose
EcoFaaS, the first energy-management framework for serverless
environments. EcoFaaS takes energy efficiency as a first-class
design principle to achieve an energy-optimized serverless
environment. At the same time, EcoFaaS ensures the end-to-
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end performance target of serverless applications based on their
Service Level Objectives (SLOs).

EcoFaaS achieves its goals through four main design princi-
ples. First, EcoFaaS is an SLO-driven serverless framework.
In EcoFaaS, users specify the end-to-end SLO of the entire
application—i.e., the maximum time that 99% of application
invocations can take. EcoFaaS automatically splits the end-to-
end application latency budget into per-function time budgets.
Then, the functions, within their sandboxes, monitor the
performance and comply with the assigned budget.

Second, EcoFaaS profiles and predicts the execution time
and energy consumption of function invocations, taking into
account their idle times and specific invocation inputs. Based on
these predictions, EcoFaaS identifies the optimal core frequency
to use for each function invocation. To take corrective actions
on mispredictions, EcoFaaS continuously tracks the progress
of invocations and updates the cores’ frequencies as needed.

Third, to minimize the high overheads of changing core
frequency, EcoFaaS dynamically splits the cores in the server
into Core Pools. Within a pool, all cores run at the same
frequency and are controlled by a single scheduler. Different
pools have different core counts and use different frequencies.
When EcoFaaS determines the best frequency to use for a
given invocation, it assigns the invocation to the corresponding
pool. In this way, EcoFaaS avoids changing frequency as much
as possible while executing function invocations efficiently.

Finally, EcoFaaS makes the Core Pools elastic—it dynam-
ically changes pool sizes and their frequencies. EcoFaaS
supervises the system use and periodically recomputes the
Core Pool set-up to adapt to the workload.

We implement EcoFaaS on top of the open-source serverless
platforms OpenWhisk [1] and KNative [6], and evaluate it
with a diverse set of serverless applications [22], [37], [69].
Compared to state-of-the-art energy management systems, and
averaging across various system loads, EcoFaaS reduces the
total energy consumption of serverless clusters by 42%, while
reducing tail latency by 34.8% and increasing throughput by
1.8×.

This paper makes the following contributions:
• An analysis of the energy consumption of serverless systems.
• The design and implementation of EcoFaaS, the first energy-
management framework for serverless environments.
• Evaluation of EcoFaaS on two open-source FaaS platforms.

II. BACKGROUND: SERVERLESS ENVIRONMENTS

Serverless platforms such as OpenWhisk, KNative, Open-
FaaS, and OpenLambda [1]–[3], [6]–[8], [56], [109] are
organized in a manner shown in Figure 1. The Frontend
checks the integrity of function requests and forwards them to
the Cluster Controller or Load Balancer. The Load Balancer
monitors the state of the different nodes of the distributed
machine and distributes the requests across the available nodes
to ensure load balance. In each node, a Node Controller
maintains a pool of available containers and is in charge of
function scheduling. All requests forwarded to a node are
handled by the Node Controller. When the resources needed
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Fig. 1: Overview of existing serverless platforms.

for a function request (e.g., a number of cores) are available,
the Node Controller encapsulates the function code with all
dependencies inside a container, and then invokes the function’s
handler on a core.

One of the main attractions of serverless computing is
its cost effectiveness [14], [89]. Users are charged only for
the resources that their functions use, and once the function
becomes inactive, it is unloaded from memory. This creates
a highly dynamic environment, where providers densely pack
functions on servers, and the mix of functions concurrently
running on a server changes rapidly. Such functions can have
very different properties. For example, functions that train a
machine learning model and require many CPU cycles [18],
[19] can run concurrently with I/O-bound web services [16].

These functions are only the building blocks for the end-
to-end applications. Applications are composed of multiple
functions connected with each other in a workflow constructed
via composition frameworks such as AWS Step Functions [15],
Azure Durable Functions [88], IBM Cloud Composer [59], or
Google Cloud Workflows [50].

III. ENERGY-EFFICIENT SERVERLESS ENVIRONMENTS

To understand the unique energy-efficiency challenges in
serverless environments, we characterize real-world serverless
workloads [24], [116] and open-source applications [9], [69]
on an Intel Haswell E5-2660 server. Section VII describes
our methodology, including the datasets and applications in
detail. Based on our observations, we propose the following
recommendations to attain highly energy-efficient serverless
computing environments.
1. Serverless environments should be SLO-driven. We
characterize the execution time and energy consumption of
serverless functions at different core frequencies, ranging from
1.2GHz to 3GHz. We show their response time (Figure 2a)
and energy consumption (Figure 2b). Consider the execution at
3GHz, and set the SLO to a few times the function execution
time, as it is commonly done [41], [90]. We can see that many
functions can be executed at substantially lower frequencies
without violating such SLO, while saving substantial energy.
For example, running CNNServe at 2GHz rather than at 3GHz
increases its response time by 23% while reducing its energy
consumption by 40%. As another example, running WebServe
at 1.2GHz rather than at 3GHz increases response time by only
12% while reducing energy consumption by 47%.
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Fig. 2: Normalized (a) response time, and (b) energy consumption
of serverless functions with different core frequencies. The numbers
above the legend show the execution time and energy consumption
per function execution at 3GHz core frequency.
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Fig. 3: Normalized response time of serverless functions at 3GHz
with different (a) number of LLC ways, and (b) memory bandwidth.
The numbers above the legend show the function execution time with
16 LLC ways and 100% memory bandwidth.

Furthermore, functions are typically single-threaded and have
relatively small memory footprints. Hence, they do not benefit
from extra cores and benefit little from more memory resources.
For example, Figure 3 shows the normalized response time
when executing a function at the highest frequency of 3GHz
with different (a) number of LLC ways and (b) percentage of
memory bandwidth, both controlled by the pqos tool [4]. The
latencies are normalized to the setup with the maximum amount
of resources (16 LLC ways or 100% memory bandwidth). We
see that, when using 4 LLC ways or 20% memory bandwidth,
the response time increases at most by 6% and 4%, respectively.
Hence, the core frequency is the main controllable knob that
affects a function’s performance and energy consumption.

Unfortunately, as cloud providers have no visibility into the
performance requirements of user functions, they constantly
operate at the highest frequencies, unnecessarily consuming
energy. Furthermore, the energy-performance trade-offs are
complex, as serverless applications are composed of multiple
functions chained together into an application workflow. Differ-
ent functions can have different latency and energy consumption
profiles. Thus, it is hard for end users to reason about an
execution plan that minimizes the energy consumption while
satisfying the application’s performance requirements.

We believe that, to substantially increase the energy efficiency
of serverless environments, users need to specify the overall
performance expectations of their applications, commonly
expressed as SLOs. Then, the platform should automatically
and transparently optimize the execution of each function of
the application for overall minimal energy consumption while
operating within the performance constraints.

WebSrv ImgPr RnnSrv CnnSrv WordCnt LrSrv VidPr Linpack Average0
2
4
6
8

Pr
ed

. E
rro

r (
%

) 1.04 5.38 29.21 1.01 386.5 1.09 17.23 906.49 168.48
Selected features All features

Fig. 4: Prediction error of function execution time when functions
are called with inputs not seen during training. The numbers on top
of the bars are the ratio of longest to shortest execution time.

2. Serverless environments should be input-aware. The
execution time of serverless functions can depend on the
functions’ inputs. To understand this effect, we execute our func-
tions with various inputs from large open-source datasets [42],
[65], [73], [81], [94]. After profiling over 100 open-source
serverless functions [22], [37], [69], [108], [114], we observe
that, typically, the execution time as a function of the inputs is
either constant or can be approximated with simple polynomial
functions. Consequently, like prior work [34], we extract high-
level features from inputs, such as the size of the file, the
duration of the video, or the resolution of the image, and train
a simple three-layer neural network. After that, when a new
input is received with certain values for the high-level features,
the network estimates the execution time of the function with
the new input.

In addition, in another set of experiments, we train the model
with all the inputs of a function—not just those that appear to
impact the execution time. With this approach, developers do
not have to specify which are the important input features.

Figure 4 shows, for each function, the prediction error of
our models, defined as (|E−A|)/A, where E is the estimated
execution time and A the actual one. Each function has two
bars, one for the model trained with selected features and one
for the model trained with all the features. On top of the bars,
we show the ratio of the longest to the shortest execution
time for individual functions. We see that, although functions
have a large range of execution times, their execution is highly
predictable. On average, the error is only 3.6% when the model
is trained with selected input features and only 3.8% when it
is trained with all the input features. Therefore, we train our
model with all the features and keep the prediction accuracy
high while reducing the burden on developers.

3. Serverless environments should exploit the substantial
idle time within function invocations. Function execution time
is short, ranging from a millisecond to a few seconds [101],
[111]. Even during such a short time, functions are mostly idle,
waiting for RPC responses from remote functions or remote
storage. In our applications, functions accessing data from
remote storage commonly spend 70% of their execution time
idling. Thus, to improve resource utilization and keep cores
busy, advanced serverless systems perform a context switch
when a core stalls. As a result, context switches are typically
as frequent as one every few hundreds of µs [64], [100], [104].

However, state-of-the-art energy-management frameworks
for traditional applications are designed with a run-to-
completion model [34], [58], [67], [118]. As an example,
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Fig. 5: Normalized total energy consumption of functions averaged
across loads when executed under Run-To-Completion or Context-
Switch-On-Idle. The numbers on top of the bars show the total energy
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Gemini [118] maintains a FIFO request queue and detects the
arrival of a request whose deadline will be missed if executing
at the current frequency. Then, it executes all queued requests,
one at a time, at a higher frequency to meet the critical request’s
deadline. The system relies on the run-to-completion model
to predict the queuing time for each incoming request. This
approach works well for applications that are not I/O bound.
However, it can be detrimental for the performance and energy
efficiency of serverless environments with many I/O-bound
functions. With the run-to-completion model, as the request
queue builds up, the invocations execute at higher frequencies,
while wasting the time that functions spend being blocked.

We measure the energy consumption needed to meet the
SLOs in two environments: Run-To-Completion and Context-
Switch-on-Idle. The latter uses the idle time of an invocation to
run another ready-to-run invocation. We execute our functions
at different loads, varying the request inter-arrival time with a
Poisson distribution. We set the SLO of a function to be 5×
its execution time on an unloaded system.

Figure 5 shows the total energy consumption averaged across
all loads when running each function in either environment.
Context-Switch-on-Idle allows for more invocations to execute
at lower frequencies. Hence, as we see in the figure, it reduces
the energy consumption by 42.3%. As the idle time within
invocations increases and as the load gets higher, the savings
become more substantial. It can be shown that Context-Switch-
on-Idle also improves the performance of serverless functions,
especially when the load is high. For example, on average
across all functions in high load, the average and tail latencies
are reduced by 48.2% and 67.4%, respectively.

4. Serverless environments should minimize the number of
core frequency changes. To exploit the idle time within an
invocation, when a core becomes idle, it should context switch
to another function invocation. This new invocation may have
a different optimal frequency. Thus, at every context switch,
the system might need to change the core’s frequency.

Such changes are expensive. Recall that a server can be
running serverless functions from different users, and they
are isolated from each other in different VMs [10], [116]
or containers [1], [6], [49]. To change the core’s frequency,
sandboxed serverless functions need to communicate with the
host and cross the OS kernel boundary (i.e., switch between user
and kernel spaces). Consequently, even though the hardware
overheads of changing the core frequency are only a few tens
of microseconds, our results show that, in Linux-based systems
with an ACPI frequency driver, the overhead of changing
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Fig. 6: Normalized function throughput (higher is better) when
executed in ConstFreq and SwitchFreq. The numbers on top of the
bars show the ConstFreq throughput in Requests-Per-Second (RPS).

core frequencies from userspace processes or containers is
10-20ms. This overhead is of the same order of magnitude as
the execution time of a serverless function.

To see this effect, we execute our functions in two environ-
ments. First, in ConstFreq, we keep the frequency constant
at 2.5GHz throughout the whole run. Second, in SwitchFreq,
we keep setting the frequency to 2.5GHz at every context
switch. Thus, the two environments execute under the same
conditions; the only difference is the overhead of invoking the
kernel to set the core’s frequency in the second case. Figure 6
shows the throughput of the functions in the two environments.
We see that the overhead of changing the core’s frequency
from the virtualized sandboxes can significantly reduce system
throughput. For short functions like WebServ, the throughput
losses are higher. On average across all functions, SwitchFreq
reduces the throughput of ConstFreq by 24.1%. Hence, for
energy efficiency, one should minimize frequency changes.
5. Serverless environments should dynamically adapt to
workload changes. An intuitive way to minimize the number
of core frequency changes is to dedicate some cores to each
frequency level. Functions with similar frequency needs can be
grouped together into classes and better utilize the shared cores
while minimizing core frequency changes. The key challenge
is to address serverless workload dynamics: the workload
is ephemeral, functions are frequently loaded/unloaded from
memory, and their loads continuously fluctuate [101], [111].

We analyze open-source production-level traces from Azure
Functions [116] to understand the co-location of different
functions. Figure 7 shows the CDF of the number of different
functions executed in a small cluster within 1 second, 10
seconds, 1 minute, and 10 minutes. We see that, within a
second, the system executes on average 3 different functions,
but it may execute up to 36 different functions. Within 10
seconds, it may execute up to 52 different functions. This is
in contrast to the traditional VM-based cloud environments,
where only a few long-lived VMs share the cluster for long
durations. This shows that the optimal allotment of cores to
function classes at a given time can rapidly become suboptimal.

IV. LIMITATIONS OF CURRENT ART

Researchers have proposed energy-management frameworks
for systems running long-lived applications. For example,
Pegasus [79] achieves energy proportionality by setting the
power limit of the entire server to be able to meet, but not
exceed, the SLO of the application running on that server.
EETL [55] places requests on slow cores, and reschedules
them to fast cores when it predicts that the SLO will not be
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met. Adrenaline [58] predicts long requests before scheduling
them on cores and boosts their frequency from the beginning of
their execution. ReTail [34], Rubik [67] and Gemini [118] take
one step further and predict the optimal frequency for every
request individually. NCAP [12] and NMAP [66] proactively
transition a processor to an appropriate performance or sleep
state based on the rate of received and transmitted network
packets containing latency critical requests. These schemes are
effective for latency-critical monolithic applications or backend
services. Unfortunately, they are not a good fit for serverless
environments.

First, these schemes target a single service or a monolithic
application, while serverless applications are workflows of
many functions glued together. As these functions may execute
on different machines, have different performance and energy
profiles, and execute in highly dynamic environments, it is non-
trivial to specify individual function deadlines, while keeping
end-to-end application target response time satisfied.

Second, these schemes rely on a run-to-completion model
when determining the per-application or per-request optimal
frequency. They assume that the running request has to finish
before a new request can be scheduled for execution [34], [67],
[118]. The run-to-completion model is a reasonable assumption
for applications that keep their cores busy throughout most
of the execution. However, it is energy inefficient for the
typical serverless function, which is mostly idle waiting on I/O.
Researchers have explored techniques to efficiently coordinate
sleep states with frequency states during idle periods [35],
[78]. However, these works assume server-wide idleness. In
a serverless setup, while a single invocation experiences idle
time, there are other invocations waiting in the queue ready to
execute. Thus, if the core refuses to execute waiting invocations
and goes to sleep, it will need to execute these invocations later
at a higher frequency, to compensate for their longer queuing.

Third, these schemes assume a negligible cost for frequency
changes. The assumption is true for long-lived applications
with dedicated cores and infrequent context switches. However,
in serverless environments: (i) cores frequently context switch
between invocations of the same or different functions, and
(ii) functions run in virtualized sandboxes, unable to directly
change the core frequency without contacting the host.

Lastly, these schemes are mainly designed for server ma-
chines running a single long-lived application [34], [118], a
latency-critical application co-located with a batch applica-
tion [67], or a few co-located applications using exclusively
partitioned resources [33], [91]. Serverless environments have

a very different resource model: many functions with various
performance requirements can concurrently execute on the
same machine, and the machine is typically overprovisioned
with more functions than available cores [10].

On the other hand, state-of-the-art serverless systems are not
optimized for energy efficiency. They improve performance by
(i) minimizing cold start overheads [31], [43], [45], [92], [101],
[102], [109], (ii) improving resource utilization [11], [27],
[51], [64], [72], [104], (iii) reducing the cost of remote storage
access [70], [82], [98], [104], and (iv) proactively scheduling or
executing functions of an application’s chain [30], [40], [105].
They do not consider energy consumption in their designs.

V. ECOFAAS OVERVIEW

Based on our recommendations in Section III, this section
presents EcoFaaS, the first energy-management framework for
serverless environments. EcoFaaS is based on four main ideas.
1. EcoFaaS is driven by SLO metrics. In existing serverless
platforms, to meet the expected performance, end users specify
the number of cores or the amount of memory devoted to the
function [17], [48], [71], [87]. Unfortunately, it is not easy
for users to reason about the exact impact of these resources
on the performance and energy efficiency of functions [28].
Furthermore, applications are composed of multiple functions.
Thus, specifying these resources for individual functions makes
the end-to-end outcome even more opaque. As a result, cloud
providers simply execute all functions with the requested cores
or memory at the highest core frequency.

EcoFaaS argues for a different environment, where end users
only specify the end-to-end SLO of the entire application—i.e.,
the maximum time that 99% of the application invocations
can take. This approach enables the end user to provide an
accurate specification of what they need, without increasing
the user’s specification burden. As importantly, it enables cloud
providers to optimize execution for energy efficiency. Specifi-
cally, EcoFaaS automatically splits the SLO of an application
into per-function time budgets, and then dynamically sets the
frequency of cores executing individual functions based on the
current system conditions. The goal is to execute functions
at their most energy-efficient frequencies while satisfying the
SLO of the end-to-end application.
2. EcoFaaS profiles and predicts the execution time and
energy of function invocations. During execution, EcoFaaS
profiles the execution time and energy consumption of functions
at different core frequencies. It also takes into account variations
due to different function inputs. The execution time is broken
down into: 1) execution on a core (TRun), 2) I/O blocking due
to RPCs (TBlock), and 3) waiting in a queue to be processed
(TQueue). Note that TBlock and TQueue are substantial and
often comparable to TRun. EcoFaaS uses values of profiled
TRun and TBlock, and values of predicted TQueue based on
current system conditions, to select the core frequency for each
function that leads to the most energy-efficient application
execution while satisfying the SLO of the entire application.
3. EcoFaaS splits cores into frequency classes. For high-
est energy efficiency, different functions and even different
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Fig. 8: Overview of an EcoFaaS serverless platform.

invocations of the same function may need to run at different
frequencies. However, functions typically have millisecond-
level execution times and include blocking events that cause
context switches. Since changing core frequency at every con-
text switch is inefficient, EcoFaaS avoids changing frequency
as much as possible. It keeps Core Pools running at different
frequency levels and tries to assign the execution of individual
function invocations to the pool that has a frequency equal or
slightly higher than the invocation’s optimal frequency. Each
pool is controlled by a Frequency Pool Scheduler (FPS).
4. EcoFaaS changes pools and pool frequencies dynamically.
In serverless environments, the functions being invoked and
their popularity change over time. A partition of cores into
frequency pools that was optimal at a given time may quickly
become suboptimal. Hence, EcoFaaS supervises the system use
and periodically recomputes the assignment of cores to pools
and the frequency of each pool. The goal is to execute the
functions in the most energy-efficient manner while capturing
the dynamics of the workloads executing.

VI. ECOFAAS DESIGN

Figure 8 shows the organization of an EcoFaaS serverless
platform. Like existing schemes depicted in Figure 1 [1], [6],
[29], EcoFaaS has Frontend and Load Balancer modules, and
per-node Node Controllers. On top of these, EcoFaaS adds a
Workflow Controller per application and, inside each node, a
Function Dispatcher per function container, Core Pools, and a
Frequency Pool Scheduler per pool. Except for the core pools,
all these structures are software structures.

The Workflow Controller maintains the SLO of the applica-
tion and calculates the execution deadline for each function of
the application to attain maximum energy efficiency. Then,
it sends the computed deadlines for each function to the
corresponding Function Dispatchers.

A Function Dispatcher manages a function container. It
receives requests for its function, forks a Handler process to
execute each request, and selects the optimal frequency to run
the requests based on the function profile and the execution
deadline. Additionally, each Function Dispatcher profiles the
execution of the invocations of its function and, every Tupdate,
sends the profile to the corresponding Workflow Controller to
update the optimal per-function deadlines.

Based on the chosen frequency, the Function Dispatcher
registers the function invocation to execute in a specific Core
Pool. The cores in that pool run at a selected frequency and
are managed by a user-space Frequency Pool Scheduler (FPS).
When a core in that pool becomes available, the function
invocation is scheduled for execution; when the execution
blocks due to an RPC, another invocation registered with the
same pool (from the same or a different function) is scheduled.

The Node Controller periodically collects runtime metrics
from every FPS, including the number of queued and served
invocations, and invocations that could have been executed at
lower frequencies if an appropriate core pool had been available.
Based on this information, the Node Controller adjusts the
allocation of cores to pools and the frequency of each pool.

A. SLO-Aware Workflow Controller

When a user submits an application invocation to EcoFaaS,
they specify the end-to-end SLO for the application. Then,
EcoFaaS automatically and transparently splits the application’s
SLO into the optimal per-function deadlines. The response
time and energy consumption of different functions in the
application may have different sensitivity to core frequency.
The optimal execution is the one that minimizes the combined
energy consumption of all the functions of the application
while finishing the application within the SLO.

To achieve this, the Workflow Controller of an application
uses profile data regularly provided by the Function Dispatchers
of the constituting functions. Such information is kept in a
per-application software structure called Delay-Power Table
(DPT). The DPT has an entry for each function Fi of the
application running at each of the possible frequencies fj . The
entry contains the predicted execution time tFi

fj
of the function

(equal to TRun + TBlock + TQueue) and the predicted energy
consumption EFi

fj
. Then, the Workflow Controller uses Mixed-

Integer Linear Programming (MILP) [85] to pick the frequency
for each function that minimizes

∑
EFi

fj
under the constraint∑

tFi

fj
≤ SLO. MILP is a suitable technique as both objective

function and constraint are linear relations and the calculations
support FP numbers.

Figure 9 shows the DPT for an application composed of
functions FA, FB , and FC , and supporting frequencies f1,
f2, and f3. The Workflow Controller determines the optimal
frequency of each individual function and the resulting deadline
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of each function. For example, Figure 9 shows with tick marks
the optimal frequencies of each function. Based on the figure,
FB’s optimal frequency is f1, and FB’s deadline is tFA

f2
+ tFB

f1
.
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Fig. 9: Organization of the Delay-Power Table for one application.
Check marks show the chosen frequencies for each function.

This approach handles cases where a function invokes
multiple parallel children functions. The workflow controller
assigns a deadline to the group of parallel functions based on
the slowest function in the group.

B. Energy-Aware Function Dispatcher

When a container receives a function invocation, the dis-
patcher in the container creates a handler to execute the
invocation. To execute the invocation in the most energy-
efficient manner, the dispatcher uses: (i) information provided
by the Workflow Controller that is included in the function
invocation message and (ii) profiling information on the
function that the dispatcher has gathered from past executions.

The function invocation message includes the deadline for
executing the function in absolute time, as computed by the
Workflow Controller. It does not include the recommended
execution frequency. The reason is that the current execution
environment may be different from the one used by the
Workflow Controller to estimate the optimal computation.

To see why, consider our running example of the application
with functions FA, FB , and FC , and assume that we are at a
point when we want to run FB . Figure 10a shows the timeline
of the optimal execution computed by the Workload Controller,
where FA’s deadline is tA, FB’s is tB , and FC’s is tC . In
practice, assume that the execution of FA was faster (e.g.,
the load was low and there was little queuing) and took only
t′A (Figure 10b). Now, given FB’s unchanged deadline, the
dispatcher for FB can pick a lower frequency.

0 Time since application request arrives

0

𝐹! Execution 𝐹" Execution 𝐹# Execution𝑡! 𝑡" 𝑡#
(a) Expected timing

0

𝐹! Execution 𝑡!$ 𝑡" 𝑡#
(b) Actual timing

𝐹# Execution𝐹" Execution

Fig. 10: Timeline of a three-function application execution.

To pick the best frequency at which to run FB , the dispatcher
examines the history of past executions of FB . The dispatcher
has been profiling prior executions of the function and stored

the profile in a software structure for that function called
History Table. Figure 11 shows the design of the table. It
contains TRun, TBlock, and Energy for the few most recent
executions of the function. Recall that the execution time of
the function is TRun + TBlock + TQueue, while Energy is the
energy consumed during TRun. Since TRun depends on the
frequency, both TRun and Energy have entries for multiple
frequencies. This is not the case for TBlock. The History Table
is continuously updated: every time a handler executes the
function, it measures and saves TRun, TBlock, and Energy.

Handler ID Frequency 𝑇!"#
𝐼𝐷$
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𝑡&'()*%
𝑡+",",$

𝑡+",",%
𝑡-"#$

𝑡-"#%
𝑓$
𝑓$

𝑇.'()* 𝑇/",",

𝑇!"# HistoryFrequency Energy History 𝑇.'()* History
𝑓$
𝑓% 𝑇!"#% , 𝑇!"#% , 𝑇!"#%

𝑇!"#$ , 𝑇!"#$ , 𝑇!"#$ 𝐸$, 𝐸$ , 𝐸$
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𝑇.'()*, 𝑇.'()*, 𝑇.'()*

(a) Handler Buffer

(b) History Table

Fig. 11: The History Table in a dispatcher.

With this information, the dispatcher can estimate the
expected TRun, TBlock, and Energy for different frequencies.
We propose two different approaches. The first, simpler one,
is for the dispatcher to use the exponentially weighted moving
average (EWMA) [80] of these three parameters. EWMA
assigns higher weights to more recent measurements, and
uses adaptive smoothing with the Holt-Winters method [57] to
dynamically adjust a parameter α based on the changes in the
system state.

A better, more advanced approach is to also record in the
History Table the inputs of the function for each invocation,
and then use a machine learning model to estimate the expected
TRun, TBlock, and Energy for different frequencies. We discuss
this design in Section VI-E2.

After the dispatcher estimates the expected TRun, TBlock,
and Energy for each frequency, it estimates TQueue. For this,
the dispatcher examines the number of waiting jobs in the
queues of the Core Pools in the server. This is enough to
estimate TQueue, given that we use: 1) FIFO queueing, 2)
pre-emption of a younger job when an older job is ready to
run, and 3) a user-space scheduler whose scheduling overhead
is largely negligible. Finally, with all this information, the
dispatcher picks the frequency with the lowest Energy that still
satisfies t′A + TRun + TBlock + TQueue ≤ tB , where tB is the
deadline to complete FB according to the Workload Controller.

When a function is unloaded from the system, its History
Table is saved as part of the function’s context. It is then used
as a starting point when a new instance of the function is
created in the future, hence avoiding cold start effects. When
there is no prior knowledge about a function’s execution, the
dispatcher picks the highest possible frequency.

C. Core Pools and Frequency Pool Schedulers (FPS)

As shown in Section III-3, cores in serverless environments
experience context switches as frequently as one every few
hundreds of µs. If, in EcoFaaS’ quest to execute invocations
at optimal frequencies, EcoFaaS had to change the frequency
of a core at every context switch, the overhead would be
intolerable. Indeed, changing the frequency takes about 10 µs
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without software overhead and often 1000x more with software
overhead (Section III-4). Therefore, EcoFaaS faces a tradeoff
between fine-tuning the core frequency to attain higher energy
efficiency and not doing it to reduce overhead.

In practice, serverless workloads are often bursty: the same
function is invoked many times in a short period. When this
happens, it offers the ability to reuse the core frequency across
function invocations. Also, different functions co-located on
the same server may have the same frequency requirements.
For these reasons, and because cores typically offer a limited
number of frequency levels, EcoFaaS organizes the cores in
a server into dynamic Core Pools. The cores in a pool run
at the same frequency, while different pools run at different
frequencies. Core pools dynamically change the number of
cores and the frequency based on application demands.

When a Function Dispatcher has estimated that a function
should optimally run at a given frequency, the dispatcher
searches for and picks a Core Pool that is running at the
same or slightly higher frequency. Since different invocations
of the same function may have different optimal frequencies,
the Function Dispatcher can register different invocations of
the function with different Core Pools.

A Core Pool is managed by a Frequency Pool Scheduler
(FPS) that schedules function invocations on the cores. As
indicated before, the FPS is user-level, uses FIFO, allows a
ready-to-run older job to immediately preempt a younger job,
and has negligible scheduling overhead.

Recall that EcoFaaS estimates TQueue before deciding the
optimal core frequency to use to run a function. To make it
easy to do so, each FPS maintains Estimated Wait Time (EWT)
counters that give the wait time for executions at the current
and all higher frequency levels. An EWT counter contains the
sum of the expected TRun of all the queued and running jobs.
When a new invocation is added to the queue, the EWT counter
is incremented by the invocation’s estimated TRun; when an
invocation completes, the EWT counter is decremented by the
invocation’s TRun. An EWT counter divided by the number
of cores in the Core Pool estimates TQueue.

With FPSs, user VMs or containers use a clean interface
to register invocations for execution at different frequencies—
while maintaining their black-box property. Cloud providers
do not have, and do not need, visibility into the code of
users’ functions. Instead, Function Dispatchers perform all
the profiling, monitoring, and optimal frequency calculations
inside the sandboxed VMs or containers. Then, the Function
Dispatchers register the invocations with the chosen Core Pool,
and give to the pool’s FPS only the estimated time that the
invocation will spend running on a core.

D. Elastic Core Pools

Due to the dynamic nature of serverless environments, the
number of cores in each pool and their frequency is unlikely
to be optimal or even usable for more than a short time.
Consequently, EcoFaaS dynamically changes the Core Pools.

Consider first the case when a function invocation I0 may
be unable to meet its deadline in any of the Core Pools. In

this case, the corresponding dispatcher checks if the deadline
can be met in one of the pools by temporarily increasing the
frequency. Specifically, the dispatcher first looks for a pool
where I0’s deadline is met if the existing frequency is kept
for the currently-queued jobs, and the frequency is temporarily
boosted only when it comes to I0’s turn to execute. If such
pool exists, this strategy is used. Otherwise, the dispatcher
looks for a pool where I0’s deadline is met if the frequency is
temporarily raised for both the currently queued jobs and I0. If
such pool exists, this second strategy is used. Otherwise, I0’s
deadline will likely be missed, but the dispatcher still picks
the queue with the shortest T

′

Queue (defined as the predicted
queuing time at the highest possible frequency) and the system
increases the frequency of all the queued jobs and I0 to the
maximum possible value.

Consider now the case when the workload changes sub-
stantially. For example, initially, there are many invocations
choosing frequency f1 and few choosing f2; then, suddenly,
frequency f2 becomes popular while f1 is rarely needed.

EcoFaaS tackles this challenge by periodically reassigning
cores among pools and changing the frequency of pools.
Specifically, during each Trefresh interval, the FPS in each pool
records the number of served invocations, the average waiting
time in the queue, the number of invocations that could have
been executed at a lower frequency (but found no appropriate
pool), and the number of invocations that required temporary
increases in frequency to meet deadlines. Then, at the end of
the interval, all FPSs send their collected information to the
Node Controller.

The Node Controller uses this information to apportion cores
to pools, and to set the frequency of the pools for the next
interval. The process is as follows. Each pool i is assigned
a weight Wi. Pools that served more requests or had longer
waiting times receive higher weights. After that, the Node
Controller assigns a number of cores Ni out of the total Ntotal

to pool i based on Ni =
Wi∗Ntotal∑

Wi
. Then, those pools that often

had to temporarily increase their frequency to meet invocations’
deadlines are assigned the next higher frequency level, while
pools that often took invocations that could have executed at a
lower frequency are assigned the next lower frequency level.

E. Improving the Robustness of EcoFaaS

We improve the robustness of EcoFaaS in three ways.
1) Cold starts: When an invocation experiences a cold start

(i.e., there is no warm VM/container), the system starts-up
the VM/container and initializes the function before executing
the invocation. Despite recent advances that minimize this
cost [5], [64], [101], [104], [109], the duration of a cold start
is, at best, of the same order of magnitude as the function’s
execution. If the cold start is on the critical path, EcoFaaS
executes both cold start and the function’s handler at a high core
frequency, substantially degrading energy efficiency. Otherwise,
the Workflow Controller tries to execute the cold start early,
off the critical path, and at lower frequencies. The process is
as follows.
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The controller checks if any function in the application has
no available container in the cluster and, hence, will require a
cold start. If such a function exists, the controller prewarms
the container at a lower frequency, in the background, while
the predecessor functions in the application’s chain are being
executed. If there are multiple functions that will experience
cold starts, their containers are prewarmed in parallel.

To determine the frequency to use in cold starts of the
function, EcoFaaS prewarms the container at different frequen-
cies in different cold starts of the function, and populates the
Delay-Power Table of the function. After that, in subsequent
cold starts of the function, EcoFaaS picks the minimal core
frequency that can complete the cold start within the sum of
the predecessor functions’ deadlines. For example, the cold
start of Fc in Figure 9 has to be completed in tFA

f2
+ tFB

f1
. In

this way, when Fc executes, it will not suffer a cold start.
2) Function Input Sensitivity: As indicated in Section III-2,

the execution time of some functions varies with the function
inputs, but these variations are highly predictable. Hence,
similar to prior work [34], EcoFaaS uses a machine learning
(ML) model to estimate the expected TRun, TBlock, and Energy
of a function invocation. As indicated in Section VI-B, every
time that a handler executes the function, it measures and
saves TRun, TBlock, Energy, and the function inputs in the
corresponding History Table. Then, when a new invocation
of the function is received (with potentially new inputs), the
Function Dispatcher uses the ML model to estimate TRun,
TBlock, and Energy for different frequencies. The model we
use is lightweight, has three fully connected (linear) layers and
ReLU activations, and takes the features of all the inputs of the
function, to eliminate any annotation burden on developers. The
model is trained online using live traffic of function invocations.
As indicated in Section III-2, its prediction error is less than
4%, while its overhead is only a few tens of µs.

3) Heterogeneous Servers: While datacenters strongly fa-
vor machine homogeneity [25], [110], many of them have
heterogeneous servers. In this case, the Delay-Power Table
(DPT) generated for one server type (e.g., Intel Haswell [63])
cannot be directly reused by another server type (e.g., Intel
Skylake [61]). Hence, EcoFaaS needs to profile the functions
on all server types. Note that, on average, only a few tens
of application invocations are needed to populate the DPT
of the functions in the application for each type of server.
During most of these invocations, the application maintains
good performance, although its energy efficiency is suboptimal.
Since applications are invoked thousands of times a day [24],
[111], the impact of this profiling period is largely negligible.

However, to minimize this inefficiency, EcoFaaS uses transfer
ML techniques. Given the profiles (execution time and energy
consumption) of functions on machine A and a small subset of
function profiles on machine B, transfer ML generates a model
that predicts the profiles of the rest of the functions on B. In
EcoFaaS, we train and test a simple Linear Regression model
that performs transfer ML from Intel Haswell [63] servers to
Broadwell [62] and Skylake [61] servers. By using only 1/4 of
the samples from the last two machines, the model achieves

an accuracy of 93.1%.

VII. EVALUATION METHODOLOGY

Evaluation environment. We evaluate EcoFaaS in the state-
of-the-art MXFaaS [104] serverless platform, on top of Open-
Whisk [1] and KNative [6]. In this paper, we discuss only
the results with OpenWhisk, as the results with KNative are
similar. In our experiments, we vary the number of servers in a
cluster from 5 to 20. Each server is an Intel Haswell E5-2660
v3 with 20 cores organized in two sockets, with 160GB of
DRAM, a 50MB LLC, and running Ubuntu 22.04.2 LTS.

We use the ACPI frequency driver with the “userspace”
governor to allow 7 user-defined frequency settings ranging
from 1.2GHz to 3.0GHz in 0.3GHz increments. We measure
the energy consumption of each server with CPU Energy
Meter [26]. This includes the energy consumed by the package
and DRAM for both sockets running the whole software stack.
Similar to prior research [36], [44], [46], [68], [115], we
use power modeling to apportion the overall socket power
to individual cores. The model takes into account the core’s
frequency, the number of active core cycles (stall cycles are
excluded), and a few performance counters.

For the configurable parameters in EcoFaaS, we perform
sensitivity studies and pick the following values: (i) keep the
last 100 invocations in History Tables, (ii) update the Workflow
Controller’s Delay-Power Table every 5s (Tupdate), and (iii)
update the pools’ sizes and frequencies every 2s (Trefresh).
Evaluated functions and applications. We use functions
from FunctionBench [69], a widely-used suite in serverless
research [21], [45], [74], [109], [116], [117]. The functions
include ML training and model serving, image/video processing,
and web services. In addition, we use a set of real-world
serverless applications from AWS Samples [22], Severless-
Bench [114] and vSwarm [108]. The applications include ML
workflow, data analytics, online banking and booking, and
video streaming. The evaluated benchmarks are summarized
in the Table I. We use Azure Blob Storage [23] as the storage
service for all the functions and invoke functions with inputs
from open-source datasets [42], [65], [73], [81], [94]. Like
prior work [41], [90], we set the SLO of an application to 5×
the application’s warm latency on an unloaded system at the
highest frequency.

TABLE I: Serverless benchmarks used in the evaluation.
Benchmark Description

Standalone Functions (all from FunctionBench [69]
WebServ Processing JSON file fetched from the storage
ImgProc Image processing: Resize image
CNNServ ML model serving: CNN-based image classification
LRServ ML model serving: Logistic regression
RNNServ ML model serving: RNN-based word generation
VidProc Video processing: Apply gray-scale effect
MLTrain ML model training: Logistic regression

Serverless Applications
MLTune [19] Tuning an ML model (6 functions)
DataAn [114] Wage-data analysis workload (8 functions)
eBank [22] Withdraw money from an account (6 functions)
eBook [108] A hotel reservation service (7 functions)
VidAn [108] A video analysis system (3 functions)
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Fig. 12: Normalized energy consumption of Baseline, Baseline+PowerCtrl, and EcoFaaS with real-world invocation traces. The numbers on
top of the Baseline bars show the absolute energy consumption of Baseline for the 6-hour run in all 5 servers.

We first evaluate these benchmarks using the invocation
patterns from the open-source production-level traces of Azure
Functions [116]. Then, we vary the load using a Poisson
distribution to model the request inter-arrival time [11], [27],
[51], [100], [103], [107], [116]. We generate low, medium and
high loads corresponding to CPU utilizations of about 25%,
50%, and 70%, which are representative [38], [52], [77], [97].
Baselines. We compare EcoFaaS to two advanced baseline
frameworks: Baseline and Baseline+PowerCtrl. Baseline is the
state-of-the art MXFaaS [104] serverless platform. It assigns a
set of cores to each function container, allows invocations of a
function to be scheduled only on cores owned by the function,
and runs all invocations at the highest frequency.

Baseline+PowerCtrl is Baseline plus a state-of-the-art
energy-management framework for long-lived applications
based on Gemini [118]. This framework saves energy by setting
the frequency for a function invocation based on the function’s
deadline. The framework assumes a run-to-completion model
and, on a context switch, it changes the core’s frequency only if
the predicted best frequency of the next request differs from the
current core frequency. Baseline+PowerCtrl is an upper-bound
of schemes such as Gemini because it predicts an invocation’s
execution time at a given frequency with 100% accuracy.
For applications with multiple functions, Baseline+PowerCtrl
ditributes the application’s SLO to functions in proportion to
their execution time at the highest frequency, as it is done in
other systems [27], [51].

VIII. EVALUATION RESULTS

A. Energy Savings with Real-World Invocation Patterns

We use traces from Azure Functions [116] to mimic real-
world invocation patterns while executing the functions from
our benchmark suite. The traces capture the typical bursty
behavior of serverless workloads. During a 10-second window,
119 different functions are invoked. On average, a function
executes for 50 ms and is invoked 14 times during the window.
However, about 10% of the functions are invoked more than
113 times, and there is at least one time when 33 invocations
of the same function are executing concurrently.

From this trace, we select the 12 most popular functions,
which account for over 76% of all invocations. We assign 12 of
our benchmarks to these popular functions. We run the traces
for 6 hours on a cluster of 5 servers. On average, each server
receives 50-100 requests per second.

Figure 12 shows the normalized and absolute energy
consumption of Baseline, Baseline+PowerCtrl, and EcoFaaS
for each individual benchmark and for the sum of all the

benchmarks. The bars in the figure show the total energy
consumed by all the invocations of a given function. From the
figure, we see that Baseline+PowerCtrl and EcoFaaS reduce
the total energy consumption of the benchmarks by 33% and
60%, respectively, over Baseline.

EcoFaaS curbs the energy consumption of all the evaluated
benchmarks. Compared to Baseline, the benefits are higher for
benchmarks that are sensitive to core frequency; compared to
Baseline+PowerCtrl, the benefits are higher for benchmarks
with significant idle time, such as ImgProc and RNNServ.
In addition, in applications with many functions such as
eBank and eBook, the Workflow Controller in EcoFaaS assigns
optimized per-function deadlines. The result is higher energy
reduction of EcoFaaS over Baseline+PowerCtrl. Finally, by
prewarming the missing function containers, the Workflow
Controller effectively minimizes the number of function cold
starts on the application’s critical path and their energy cost
by executing them at lower frequencies. It can be shown that,
in total, the prewarming technique contributes to 10.2% of the
energy savings of EcoFaaS over Baseline+PowerCtrl.

To get more insight into the sources of energy savings,
Figure 14 shows the average frequency across all cores in a
server over time during the peak load for Baseline and EcoFaaS.
We can see that EcoFaaS always operates at lower frequencies
than Baseline. Recall that the Core Pools in EcoFaaS are
reconfigured every Trefresh = 2s to adjust to load changes.
This is why the average frequency fluctuates. Figure 15 shows
the distribution of core frequencies used by EcoFaaS across
different dynamic function invocations. More than half of the
invocations need less than 2.0GHz. Most invocations (25%)
run at 1.8GHz, while the least number of invocations run at
the highest frequency (4%) and at the lowest frequency (7%).

B. Energy Savings with Varying System Load

We evaluate EcoFaaS with different system loads in a cluster
with 20 servers. We generate Low, Medium, and High loads
with a Poisson distribution for request inter-arrival times. Recall
that these loads correspond to CPU utilizations of 25%, 50%,
and 70%, respectively. Figure 13 shows the normalized and
absolute energy consumption of Baseline, Baseline+PowerCtrl,
and EcoFaaS with the three load levels for each individual
benchmark and for the sum of all the benchmarks. Every
client request invokes one of the twelve evaluated benchmarks
randomly. Therefore, the distribution of invocations to the
different benchmarks is different than in Figure 12.

With low load, the overall CPU utilization is low. Hence,
even Baseline consumes only a modest amount of energy.
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Fig. 13: Normalized energy consumption of Baseline, Baseline+PowerCtrl, and EcoFaaS with Low, Medium, and High loads. In a given bar,
the two horizontal lines show the values for Low and Medium loads, and the total bar corresponds to High load. All bars are normalized to
Baseline-High. The numbers on top of the Baseline bars are the absolute energy consumption of Baseline-High for a 1-hour run on 20 servers.
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Fig. 14: Frequency over time during the peak load averaged across
all cores in a server for Baseline and EcoFaaS.
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Fig. 15: Distribution of core frequencies used by EcoFaaS across
different dynamic function invocations.

With medium load, Baseline+PowerCtrl reaches its sweet
spot, mainly for two reasons: (i) the queuing effects are
not substantial and, therefore, Baseline+PowerCtrl does not
overestimate queuing time and does allow most of the requests
to execute at lower frequencies, and (ii) there are few context
switches across different containers and, therefore, containers
keep their owned cores and the core frequencies do not need to
be changed often. However, the benefits of Baseline+PowerCtrl
diminish with high load. Request queues start building up and
Baseline+PowerCtrl assigns higher frequencies than are actually
needed to invocations. Further, cores frequently context switch
between different containers, which results in crossing the
boundary between user and kernel space many times.

Overall, while Baseline+PowerCtrl reduces the energy con-
sumption of Baseline by 18%, 31%, and 27% with low, medium,
and high load, respectively, EcoFaaS reduces it by 56%, 61%,
and 52%, respectively.

C. Performance Improvements

To assess EcoFaaS’ performance impact, we measure the
reduction in end-to-end average and tail latency of requests,
and the increase in their throughput. The end-to-end latency
of a function or application invocation is the time from when
the client sends a request until when it receives the result.
Tail latency. Figure 16 shows the normalized and absolute
tail latency of the benchmarks when running with Baseline,
Baseline+PowerCtrl, and EcoFaaS. The results are averaged
across low, medium, and high load. Baseline+PowerCtrl
substantially increase the tail latency over Baseline due to the

frequent and expensive core frequency changes. For example,
under high load, Baseline+PowerCtrl runs LRServ at the
highest frequency and WebServ at the lowest frequency. Thus,
at every context switch between invocations of these two
functions, Baseline+PowerCtrl changes the core frequency on
the critical path. This overhead is higher than the time an
LRServ invocation spends running on a core. Moreover, with
increased load, more functions concurrently invoke the OS to
change their core frequency, creating contention and further
increasing tail latency.

On the other hand, EcoFaaS is able to keep the tail latency
on-par with Baseline and even slightly reduce it. The reduction
in tail latency comes from the ability to share cores between
multiple functions, which reduces load imbalance. On average,
EcoFaaS reduces the tail latency by 5.0% and 34.8% over
Baseline and Baseline+PowerCtrl, respectively.

Average latency. We measure the average latency of Baseline,
Baseline+PowerCtrl, and EcoFaaS with different loads. As both
Baseline+PowerCtrl and EcoFaaS allow invocations to execute
at lower frequencies, their average response time is higher
than the one with Baseline—which executes all requests at the
highest frequency. As the load increases, more requests also
need to execute at high frequencies with Baseline+PowerCtrl
and EcoFaaS and, thus, their difference with Baseline shrinks.
On average, it can shown that EcoFaaS increases the average
response time over Baseline by 1.51×, 1.33×, and 1.17× in
low, medium, and high load, respectively. The reason for the
higher average response time of EcoFaaS is the deliberate
decision of EcoFaaS to slow-down function execution to the
point of its SLO, in order to save energy. EcoFaaS finishes all
requests within their deadline and reduces the average response
time over Baseline+PowerCtrl by 13%, 19%, and 18% in low,
medium, and high load.

Throughput. We measure a system’s throughput as the
highest sustained load that allows the benchmarks to still
meet their SLO—which is defined as a tail latency below
5× the execution time in an unloaded system. Figure 18 shows
the tail latency of CNNServ as we increase its load with
Baseline, Baseline+PowerCtrl, and EcoFaaS. The dashed line
is CNNServ’s SLO. We see that EcoFaaS and Baseline keep
the tail latency below the SLO until a load of 850 RPS, which
is their throughput. On the other hand, Baseline+PowerCtrl
reaches the function’s SLO at 350 RPS, which is its throughput.
The reasons for EcoFaaS’s high throughput are the improved
CPU utilization and the reduced number of core frequency
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Fig. 16: Normalized tail latency with Baseline, Baseline+PowerCtrl, and EcoFaaS averaged across different loads. The numbers on top of
the Baseline bars are the absolute values of the benchmark tail latency measured in seconds.
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Fig. 17: Normalized throughput with Baseline, Baseline+PowerCtrl, and EcoFaaS. The numbers on top of the Baseline bars are the absolute
values of the benchmark throughput measured in Requests-Per-Second (RPS).
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Fig. 18: Tail latency of CNNServ with the three systems while
increasing the load. The dashed line indicates CNNServ’s SLO.

changes. For CNNServ, EcoFaaS improves the throughput over
Baseline+PowerCtrl by 2.4×. For all the benchmarks, Figure 17
shows the normalized and absolute throughput with the three
systems. On average, EcoFaaS improves the throughput over
Baseline+PowerCtrl by 1.8×.

D. EcoFaaS Component Analysis

We measure the overheads introduced by different EcoFaaS
components. First, for applications with multiple functions,
the Workflow Controller uses the PuLP library [96] for its
MILP solver to compute the optimal per-function deadlines.
We test the time for the solver to produce its outputs as we
vary the number of functions in an application (from 2 to
20) and the number of different frequency levels (from 2 to
10). The overhead of the MILP solver is around 10ms. Since
EcoFaaS executes this operation only once every 5s and in the
background, off the critical path, this overhead accounts for
only 0.2% of the CPU cycles.

Second, Function Dispatchers communicate with the FPSs
via shared memory to register invocations for execution. The
communication overhead is only a few µs. Finally, the Node
Controller periodically reassigns cores across pools and sets
the cores’ frequencies. The controller runs with root privileges.
Hence, core frequency changes are triggered by writing to the
MSR registers [93], and take effect in a few 10s of µs.

We measure the accuracy of our prediction system. First, for
functions whose response time does not change with different
inputs (such as WebServe), we use a simple EWMA [80]
approach. The Mean Absolute Percentage Error (MAPE)
observed when predicting Trun, Tblock, Tqueue, and Energy

is 1.8%, 2.4%, 3.5%, and 1.9%, respectively. For functions
whose response time and energy depend on the inputs (such as
ImgProc), we predict the time and energy with a three layer
neural network with ReLU activations. Its accuracy for both
execution time and energy is 96.5% on average, while the
prediction time is only 10-30µs.

E. Trade-offs and Sensitivity Analyses

Impact of prediction accuracy on system efficiency. We
analyze how the accuracy of our prediction models affects
the overall energy efficiency. We introduce bounded errors
for the execution time overprediction and measure the energy
consumption with various loads. Figure 19 shows the energy
consumption of EcoFaaS during a 1-hour run on 20 servers
under three loads with different average overprediction errors of
the function execution time. The error is defined as E−A

A ∗100%,
where E is the estimated and A is the actual execution
time. These overprediction errors force EcoFaaS to run at
higher frequencies than necessary. From the figure, we see
that the impact of the prediction error is modest across
loads. For example, compared to an environment with no
error, an environment with an 80% error increases the energy
consumption by 22%, 16%, and 8% in low, medium, and high
load, respectively. The impact diminishes at higher loads, as
the system already runs at high frequency and there is less
room to increase it.
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Fig. 19: Energy consumption of EcoFaaS during 1-hour runs on 20
servers under three system loads with different average overprediction
errors of function execution time.

Sensitivity to configurations. We perform a sensitivity analysis
of how the EcoFaaS efficiency is affected by the time between
updates to the Delay-Power Table (DPT) and to the Core Pool
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Fig. 20: Energy consumed for different times between updates to the
DPT and Core Pools for EcoFaaS during a 1-hour run on 20 servers.
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Fig. 21: Number of core pools with three core frequency granularities.

configuration. Figure 20 shows the total energy consumption
during a 1-hour run on 20 servers with medium load, as we
change the time between DPT updates from 0.1s to 12s, and
the time between Core Pool updates from 0.1s to 10s. Updating
DPT and Core Pools as frequently as every 0.1s introduces
overheads that increase energy consumption. On the other
hand, keeping the DPT and Core Pools unchanged for a long
time results in EcoFaaS making sub-optimal decisions and
increasing energy consumption. Thus, we set these parameters
to their sweet-spot: 5s for DPT and 2s for Core Pools.
Frequency granularity. EcoFaaS picks frequencies for its Core
Pools from a discrete set of values ranging from 1200MHz to
3000MHz. Too fine-grained core frequency steps leads to many
Core Pools and high management overhead; too coarse-grain
steps leads to too few Core Pools. Figure 21 shows the number
of core pools over time in a 20-core node with core frequency
granularity of 300MHz (left) and 50 and 600MHz (right) for
the real-world invocation patterns of Figure 12. We see that
the configuration with 300MHz steps is a good design point: it
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Fig. 22: Prediction error of function execution time for different
levels of variability in function execution time.
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Fig. 23: Energy consumption of CNNServ during a 1-hour run
on 1 server with Baseline, Baseline+PowerCtrl, and EcoFaaS when
collocated with different numbers of other (different) functions.

creates 1-6 pools. Steps of 50MHz result in many concurrent
core pools (up to 10), fragmenting the server. It can be shown
that this configuration increases the tail latency over the one
with 300MHz steps by 6% and its energy consumption by 9%.
On the other hand, steps of 600MHz reduce the number of
concurrent core pools (to up to 4), inhibiting precise frequency
tuning, and causing functions to run at higher than optimal
frequencies. It can be shown that this configuration maintains
the tail latency of the one with 300MHz steps but increases
its energy consumption by 16%.
Impact of variation in function execution times on predic-
tion error. Figure 22 shows how different levels of execution
time variability affect the error in the prediction of function
execution time. We generate different datasets and, for each
one, we measure the execution time variability as the standard
deviation of the dataset normalized to the maximum value in
the dataset. We see that, for most functions, a higher variability
does not affect the prediction accuracy much. However, for
some functions such as VidProc, large variability in execution
time increases the prediction error by an absolute 2%.
Impact of inter-function interference on system efficiency.
Co-located functions may interfere, degrading system efficiency.
Fortunately, EcoFaaS both profiles functions and trains the
models online in a continuous manner. Consequently, it takes
into account the interference between co-located functions.
Figure 23 shows the energy consumption of the CNNServ
function during one hour on a server with various numbers
of co-located functions per core for the three systems. In
all configurations, all functions are invoked with constant
medium load. As the number of co-located functions increases,
the function needs to run at higher frequencies for longer
times. Thus, the energy consumption increases for all systems.
However, we see that EcoFaaS consumes much less energy
than the other two systems across all configurations. Other
functions show a similar behavior.

IX. CONCLUSION

This paper proposed EcoFaaS, the first energy-management
framework for serverless environments. EcoFaaS automatically
splits the user-provided end-to-end application SLO into per-
function deadlines that minimize the total energy consumption.
It profiles functions online and, based on their deadlines, picks
the optimal core frequencies. Further, EcoFaaS splits the cores
into multiple pools, where all the cores in a pool run at the same
frequency, and dynamically changes the size and frequency of
the pools based on system conditions. Compared to state-of-
the-art systems, EcoFaaS reduces the total energy consumption
of serverless clusters by 42% while simultaneously reducing
the tail latency by 34.8%.
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