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Abstract—Costly accesses to global storage substantially limit
the performance of serverless functions. To mitigate this over-
head, data can be cached in the memory of the nodes where
functions are executed. Existing caching schemes either (1)
restrict a data item to be cached in a single node, causing
frequent remote reads or (2) allow a data item to be cached
in multiple nodes concurrently, adding substantial overhead to
maintain cache coherence. Unfortunately, current approaches
are suboptimal for the access patterns present in serverless
workloads, which are characterized by frequent reads to small
data items, strong temporal locality, and a small number of nodes
that concurrently execute functions of the same application.

Driven by these insights, we propose Concord, a distributed
software caching system tailored to serverless environments.
Concord allows multiple copies of the same data item to be
cached in different nodes concurrently, allowing each cache
to satisfy local reads. To maintain coherence across software
caches, Concord proposes a directory-based distributed coher-
ence protocol. The protocol is inspired by hardware cache
coherence, and is enhanced to minimize coherence traffic, reduce
contention points, and be robust to node failures and frequent
coherence domain changes. Further, with the Concord coherence
protocol, we unlock two new capabilities in serverless envi-
ronments: transactional storage accesses and transparent data-
aware function placement. Compared to state-of-the-art severless
caching schemes, Concord running on a 16-node cluster speeds-
up execution by 2.4× and improves throughput by 1.7×, while
using only 6.2MB of otherwise idle application memory (i.e., 4.8%
of the total application memory).

I. INTRODUCTION

Serverless computing or Function-as-a-Service (FaaS) is an
emerging paradigm adopted by all major cloud providers [8],
[9], [29], [37], [39], [62]. It offers application flexibility,
fine-grained billing, and high resource utilization [40], [56].
With FaaS, users upload their code and providers secure
the necessary dependencies (e.g., libraries and runtimes) and
hardware resources (e.g., memory and cores) to run the code.
The unit of execution is a function deployed in a container,
and applications are composed of workflows of functions.

For high availability and fast scalability, functions are
commonly implemented as stateless services [12], [58], which
means that all the data of a function is discarded from a
node once the function is unloaded from the node. Hence,
any durable data must be stored in global storage, such as the
Azure Blob Storage service [59]. This results in inefficient
data reuse: subsequent function invocations must reload their
data from global storage. In addition, for security reasons,
cloud providers do not allow direct communication between

functions. As a result, data items must be passed through the
global storage [52], [55], [81], [83].

We measure that applications spend 35-93% of their end-to-
end response time on storage reads/writes. Such operations are
typically implemented as Remote Procedure Calls (RPCs). To
mitigate these costs, data can be cached locally in the memory
of the nodes where functions execute. However, distributed
software caches add a new challenge to the FaaS infrastructure:
how to keep these caches coherent while avoiding the high cost
of frequent inter-node communication. In this paper, we show
that prior proposals [46], [65], [68], [70], [75], [82] address
this challenge in sub-optimal ways for FaaS environments.

Most schemes [46], [65], [68], [82] cache a data item in
the memory of only a single node, called the data item’s
home node. Function invocations running on nodes that are not
the data item’s home always access the item from the home.
These schemes eliminate any need for coherence, as there
is at most one cached copy of the data item. However, they
work well only when the function invocation runs on the node
that is the home of the data items that the function accesses;
otherwise, remote accesses are needed. In practice, multiple
function instances running concurrently on different nodes
need to access the same data item. Consequently, these caching
schemes are not effective. We measure that data movement due
to remote reads/writes still accounts for up to 82% of the total
application response time.

Faa$T [70] allows a data item to be cached in multiple nodes
and keeps caches coherent via a software protocol. It uses
a versioning protocol that associates a version number with
each data item. Data items have a home node, which caches
the latest data value and version number. When a non-home
node reads the data item, it first fetches the item’s version
number from the home, even if it caches the data item locally.
Then, it compares the version number in the home with the
locally-cached version number. If the two numbers match, the
invocation accesses the data item directly from the local cache.
Otherwise, it fetches it from the home. Further, when a non-
home node writes the data item, the update is propagated to
the home, where it updates both data and version number.

This protocol works well for relatively large data items,
where fetching only the small version number is substantially
cheaper than fetching the entire data item. Moreover, it is
designed to scale to many sharing nodes and frequent updates,
as it avoids any invalidation messages. However, it is not
optimized for FaaS access patterns: we measure that accessing



and checking versions in our applications can cost up to 78%
of the application response time.

The reason is that the majority of storage accesses in FaaS
are reads to small data items. Production-level Azure func-
tions [70] reveal that 77% of the storage accesses are reads,
and 80% of the data items are no larger than 12KB. These facts
make versioning protocols suboptimal, since: (1) the time to
fetch the version number is comparable to the time to fetch
the data item, and (2) the majority of version comparisons are
unnecessary, since there are no writes between reads.

This motivates us to re-visit invalidation-based distributed
coherence for FaaS. Invalidation-based protocols, though com-
monly used for hardware cache coherence [20], [21], [49],
[66], have been disregarded in distributed software environ-
ments [24], mainly because: (1) coherence directories intro-
duce fault tolerance concerns and (2) invalidation messages
may scale poorly with increasing numbers of nodes. However,
we argue that invalidation-based protocols can be a good
match for FaaS. The reasons are: (1) functions are designed
to be stateless [12] and are thus more robust to failures, and
(2) the total number of nodes sharing the same data item is
typically less than a few 10s [72], [77], [87], which limits the
coherence traffic due to invalidation operations.

Given these insights, this paper proposes Concord, a novel
distributed caching system for FaaS environments. Concord
maintains a software data cache per FaaS application and
distributes the cache across the multiple nodes where function
instances of that application execute. Concord leverages the
extensively-studied area of hardware cache coherence and
proposes an invalidation-based distributed coherence protocol
in software.

Concord tailors the protocol to a distributed environment
in three ways. First, it organizes the distributed caches and
coherence support on a per-application basis. Second, it de-
signs the coherence protocol to be resilient to failures. Third,
it minimizes coherence traffic by modifying the scheduling
of function invocations to route them to nodes that likely
cache the needed data. To make the protocol resilient to
failures, Concord employs write-through software caches and
a distributed coordination service that monitors nodes’ health.
In case of node crashes, the coordination service redistributes
the data items homed in the crashed node. Overall, Concord
achieves high performance while ensuring data safety.

We also use Concord to provide transparent support for
transactional storage accesses and communication-aware func-
tion placement. Specifically, for transactional accesses, Con-
cord relies on its coherence protocol to detect and recover
from transaction races—instead of requiring application re-
writing [13] or extensive storage logging [86]. It buffers the
speculative state in local caches before committing it to global
storage, and relies on coherence messages to detect conflicts.
Furthermore, for function placement, Concord exploits coher-
ence messages to transparently learn over time which functions
frequently communicate with each other. Later, it uses the
collected data to intelligently co-locate such functions on the
same nodes, reducing network overheads.
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Fig. 1: Breakdown of applications’ response time into pro-
cessing and storage access. The numbers on top of the bars
indicate the absolute response time in ms.

We implement Concord in the OpenWhisk [1] serverless
platform. We use a 16-node cluster running a diverse set
of serverless benchmarks. Compared to state-of-the-art base-
lines [65], [70], Concord speeds-up execution by 2.4× and
improves throughput by 1.7×, while using only 6.2MB of
otherwise idle application memory (i.e., 4.8% of the total
application memory). Overall, this paper makes the following
contributions:
• We analyze distributed FaaS software cache designs and the

design space of coherence protocols for them.
• We introduce the Concord caching system, which includes

a high-performance and fault-tolerant directory-based dis-
tributed coherence protocol.

• We use Concord to provide transactional storage accesses
and communication-aware function placement.

• We evaluate Concord and its features.

II. BACKGROUND AND MOTIVATION

A FaaS platform [1]–[3], [36] is composed of multiple
modules. First, a frontend checks the integrity of incoming
function requests and forwards the requests to the load bal-
ancer. The load balancer distributes the requests across nodes
in the cluster for load balance. The requests forwarded to a
node are handled by a node controller. The node controller
encapsulates the function code with all dependencies inside a
container (or a micro VM), and invokes the function’s handler
with the amount of memory and number of cores that the
function is allowed to use, as given by the user.

A. Need and Opportunity for Data Cache Designs

Figure 1 breaks down the response time of popular FaaS ap-
plications into time spent reading/writing data from/to storage
and time processing the data. We will describe the applica-
tions in Section V. Our experimental results corroborate past
studies [46], [65], [70] showing that global storage access time
dominates FaaS response time. The graph shows that such time
accounts for 35.1-93.0% of the end-to-end function response
time, with an average of 63.1%.

A long line of research [46], [65], [70], [75] uses in-memory
caching to mitigate these overheads. Most works propose per-
node caches shared by all the applications co-located on the
same node (Figure 2a) [46], [65], [68], [75], [82]. However,
real-world data from Azure production [70] shows that strong
data re-use is mainly observed among invocations of the same
application. For example, 30% of Azure applications access
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Fig. 2: State-of-the-art in-memory FaaS caching schemes.

the exact same data objects across all of their invocations,
and 99.7% of data objects stored in global storage are not
shared across applications at all. Thus, caches should be
managed and maintained per application (Figure 2b), rather
than being shared across applications. This design also enables
discarding a cache instance from a node’s memory when the
corresponding local application instances are shut down.

Using main memory to cache data objects creates the chal-
lenge of properly reserving the necessary physical resources
and charging for them. Faa$T [70] allocates memory in a
node for an application’s cache and charges users extra per
cached byte access. In reality, we find that it is unnecessary
to allocate such extra memory. The reason is that the majority
of the memory already allocated for FaaS functions remains
unused. Indeed, a recent trace from Huawei [42] suggests
that users request 5× more memory than needed for 50%
of the functions, which adds-up to 100s of MBs per node.
The unused memory of one application can be transparently
and dynamically re-purposed into a cache for that same
application, improving performance for free.

Insight #1. Accesses to global storage limit the performance
of FaaS functions. Per-application data caches can mitigate
these costs transparently and, if designed properly, for free—
by utilizing applications’ allocated but unused memory.

B. Data Coherence and FaaS Trends

Reads on small data items dominate FaaS accesses. An
analysis of Azure public traces [60] performed by Faa$T [70]
showed that 80% of data items are no larger than 12KB,
77.3% of accesses are reads, and a large fraction of accesses to
data items are bursty (even burstier than Poisson). We observe
similar trends with IBM traces [25]. The high fraction of reads
and high burstiness can result in high local cache hit rates in
distributed software cache designs for FaaS.
Data is shared across nodes. We use Azure production traces
for storage accesses [70] to benchmark our FaaS applications
running on a 16-node cluster. We will describe the cluster
in Section V. We measure the number of nodes accessing
the same data, i.e., the data sharers. Table I reports the
average number of sharers under a low, medium, and high
load of requests across all data items. We find that even under
low load, there are multiple sharers per data item. For high
performance, distributed software caches should allow caching

TABLE I: Average/Maximum number of node sharers mea-
sured while running on a 16-node cluster.

Low Req. Medium Req. High Req.
Load Load Load

HotelB [28] 1.7/6 2.2/9 3.4/12
TrainT [4] 1.3/5 1.6/6 2.2/10
eShop [80] 1.1/4 1.2/5 1.4/6
SocNet [28] 2.7/11 3.6/14 5.0/15

Average 1.7/6.5 2.2/8.5 3.0/10.8

the same object in multiple nodes. Of course, for correctness,
the caches of sharers must be kept coherent.
Insight #2. FaaS distributed software caches require coher-
ence, and the protocol should be optimized for read operations
on small data items that commonly hit in local caches.
The maximum number of sharers is often modest. Table I also
reports the maximum number of sharers measured, and shows
that such number never reaches the total number of nodes,
even under high request load. This is attributed to the modest
data sharing across function instances of the same application,
and the high degree of function instance co-location in a node.
This allows us to revisit protocols for distributed systems that
were traditionally discarded because of the potential need to
support many sharers.
Functions are robust to failures. On today’s serverless plat-
forms, when a function fails, the platform re-executes the func-
tion and tolerates the failure [11], [30], [61]. To use this retry-
based approach, functions must be idempotent, i.e., functions
must exhibit the same behavior when they are re-executed.
To make functions idempotent, storage APIs for serverless
functions are also designed to be idempotent, typically using
a form of key-value interface.
Insight #3. The observed number of sharers per data object
and the inherent robustness of serverless functions on failures
allow us to revisit coherence protocols originally tailored for
hardware directory protocols.

C. Prior Art on Software Caching Schemes

We detail the operation of two closely related works:
Faa$T [70] and OFC [65]. In Section VI, we quantitatively
compare them to our proposal.
In OFC [65], each node provides a cache shared by all locally-
running applications. Each data item has a home node and can
be cached only in the cache of its home. All caches in the
system can be accessed by all applications. Figure 2a shows
an example of this system. Applications A2 and A3 are co-
located on Node 0, while A1 and a second instance of A3
are co-located on Node 1. Node 1 is the home for data E, as
determined by the hash of E’s address, and all reads/writes
to E go to the cache of Node 1. This design has no need for
cache coherence because there is no data replication. However,
it results in frequent remote reads/writes because a data item
can only be cached in its home node.
Faa$T [70] introduces per-application caches and allows mul-
tiple cached copies of the same data across nodes. A cached
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copy consists of the data value and its version number. Each
data item has a home node. The cache in the home contains
the data value that is consistent with the global storage and
the latest version number of the data. When a non-home node
reads a data item, it first fetches the item’s version number
from the home, even if it caches the data locally. Then, it
compares the number with the locally-cached version number.
If the two numbers match, the function accesses the data
directly from the local cache. Otherwise, the data is fetched
from the home. When a non-home node writes the data item,
the write is propagated to the home, where it updates both
data and version number, and then to the global storage. The
home returns the new version number, and the writing node
updates both data and version number locally. Writes by the
home node update both version and value on the data item,
both locally and in global storage. No invalidation is sent.

Figure 2b shows an example of this system with the
same application and data layout as in Figure 2a. Note that
Applications A1, A2, and A3 have separate caches. However,
A3 has caches in the two nodes. Each data item has a version
number, shown with the letter V. In the figure, Node 1 is the
home for E and E is also cached in Node 0. When A3 running
in Node 0 reads E, Faa$T first fetches VE from Node 1 and
compares it with the local VE . If version numbers are the same,
A3 consumes the local data. Otherwise, A3 fetches E’s data
and version number from Node 1, and stores them locally.

This design suffers from traffic induced by fetching version
numbers. Figure 3 compares the time it takes to fetch and
check a version number from the home node to the time it
takes to fetch the actual data from the home, as we increase
the data size in our cluster. We use dual-port Intel X520-DA2
10Gb NICs (PCIe v3.0, 8 lanes) and gRPC for reading/writing
remote data. The nodes are connected with 10 Gbps full-
duplex ethernet. The total time for fetching the data and
its sequence number also includes gRPC overheads, such
as serialization and RPC-encoding. We see that the cost of
version fetch and check is comparable to the cost of data fetch
for objects of 64KB or less; it is lower only for larger objects.
In FaaS environments, the data size is typically no larger than
12KB. As a result, Faa$T adds coherence messages that could
potentially be avoided.
Insight #4. Prior cache designs are suboptimal for FaaS, as
they induce remote accesses to either data or metadata.

III. CONCORD: HIGH-PERFORMANCE CACHING FOR FAAS

Driven by our insights, we propose Concord, a distributed
software caching system for FaaS environments. Concord
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achieves high performance with support for fault tolerance.
It exploits unused memory resources that users are already
charged for. Hence, it does not introduce any extra monetary
costs. Finally, it requires no changes to the applications.

A. Concord Overview

Figure 4 overviews the Concord system. Concord takes a
fraction of the memory allocated to local functions that is
temporarily unused, and re-purposes it to act as local cache
instances. It then binds a cache instance to each application
that includes a local function. In a cluster, a function may have
multiple function instances located on the same or different
nodes. Function instances from the same application that are
co-located on a node share a cache instance. For example, in
Figure 4, instances of Func1 and Func2 from App1 in Node
0 share the same cache instance. A given application typically
has function instances in multiple nodes of the cluster, as
different invocations of the application may be executing on
different nodes. Consequently, multiple nodes may have cache
instances of the same application. All these cache instances
together form the distributed cache of the application. In the
figure, the cache instances of App1 on Nodes 0 and 1 form
App1’s cache.

Since multiple applications may be co-located on a node,
individual nodes typically host multiple cache instances. How-
ever, as data sharing occurs only within an application, caches
of different applications are isolated from each other. Cache
instances, like function instances, are ephemeral: once all
function instances sharing a cache instance are removed from
a node, the cache instance is discarded.

Concord allows copies of the same data item to reside in
cache instances in multiple nodes, and keeps these copies
coherent—e.g., in Figure 4 data item B is cached in cache
instances in Nodes 0 and 1. As Concord binds caches to
applications, writes from one application do not affect the
caches of other applications.



Concord is tailored to the needs of a distributed FaaS
environment. Compared to systems that are kept coherent
with conventional hardware schemes, FaaS environments have
larger scale, suffer longer-latency communication and higher
network contention, and are more prone to failures. Thus,
Concord (1) minimizes contention, (2) reduces the number
of coherence messages, and, (3) provides fault tolerance.

First, to minimize contention, Concord has per-application
caches, and the directory for an application is sharded only
across the nodes that contain caches of that application. Each
data item can be cached in multiple nodes, but it is assigned
one home node. The home provides the data item to other
nodes and, through the directory, maintains the cache instances
coherent for that data. The home of a data item is decided via
consistent hashing [44]. For a given application, when a new
cache instance is created or an old one is removed, the home of
some data items of the application may dynamically change.

Second, Concord schedules function invocations via a new
coherence-aware algorithm, which tries to place invocations
that operate on the same data on the same node. In this
way, such invocations often use the same cache instance,
minimizing the need for coherence messages.

Third, Concord designs the protocol for fault tolerance.
Caches are write-through and, therefore, global storage is
always up-to-date. Further, Concord uses a distributed coor-
dination service to detect a failed cache instance and then
embeds a recovery mechanism in the protocol.

B. Concord Architecture

Concord has an organization similar to existing FaaS plat-
forms [1], [19], with enhanced load balancer and node con-
trollers. Concord adds an Application Controller and, in each
node, a Cache Agent (CA) for each cache instance. Figure 4
overviews the architecture.

Cache Agent. Each cache instance is managed by a cache
agent, which has three roles. First, storage requests issued by a
function are transparently intercepted by the function’s runtime
and forwarded to the corresponding cache agent. The cache
agent can either satisfy the request locally, forward it to a
remote cache agent, or forward it to the global storage. Second,
to maintain cache coherence, the cache agent manages a Data
Directory for the data items homed locally. The directory entry
for a given data item stores the list of remote cache agents
that have the data item in their local caches (sharers). When
a node modifies the data item, the cache agent in the data
item’s home invalidates all other sharers. Finally, the cache
agent re-purposes the allocated unused memory of all the co-
located instances of functions that belong to an application into
that application’s local cache instance. The agent monitors the
memory use of the functions and dynamically adjusts the size
of the cache instance based on the total unused memory. When
the cache instance needs to shrink, the agent evicts some data.

Node Controller. On every node, the node controller connects
function instances with the appropriate cache agent. When a
function instance is created, the node controller checks if there

is a corresponding cache instance. If there is no such instance,
the node controller creates it, together with its cache agent.
Application Controller. It stores a list of the nodes that host a
cache instance of each application in a Node Directory. When
a new cache instance is created or an old instance is removed,
it informs other cache instances of the same application.

C. Distributed Directory-Based Coherence Protocol

1) Data Directory: The main software structure for main-
taining cache coherence in Concord is the Data Directory. The
data directory of an application is distributed and managed
by the application’s cache agents. Each entry in the directory
corresponds to a data item, which is a blob of potentially
different sizes accessed by its key. A directory entry stores
the list of cache instances that currently cache the data item
(i.e., the data sharers), and whether the data item in the cache
instances is in state Shared (S) or Exclusive (E) (in which case,
there is a single sharer). The data item in a cache instance
can be in one of three possible states: Exclusive (E), Shared
(S) or Invalid (I). E and S states indicate that the data item
is cached in a single cache instance or in potentially multiple
cache instances, respectively, and that the data is coherent with
storage. The cache instance caching the data in state E is the
data owner. We use a MESI protocol without the M state; the
latter is removed to enhance reliability.

The directory of an application is distributed across all the
nodes that have cache instances of that application. A given
data item has its directory entry in its home node, where its
home cache agent manages its entry. For example, in Figure 4,
the homes and directory entries of data items A and B of
application App1 are in Node 0 and Node 1, respectively.

The home cache agent of a data item is determined via
consistent hashing [44]. Consistent hashing is a common tech-
nique used in distributed systems to shard the keys uniformly
across a cluster of nodes. The goal is to minimize the number
of keys that need to be moved when nodes are added or
removed from the cluster, thus reducing the impact of these
changes on the overall system. In Concord, we use it for
when the cache of a give application expands into more nodes
or shrinks into fewer nodes. Specifically, in Concord, all the
cache agents of an application form a consistent hashing ring.
The hash of a cache agent ID determines the position of the
cache agent in the ring. The hash of the address of a data
item determines the position of the data item in the ring.
The home of a given data item is the first cache agent that
appears in the ring while traversing the ring clockwise starting
from the data item’s position. Thus, when cache agents are
added to or removed from the ring, some data items may
change homes. Note that this is a departure from conventional
hardware schemes, where the location of the directory entry
for a data item is fixed over time, as long as the number of
nodes remains constant.

2) Coherence Operations: There are six coherence opera-
tions in Concord’s cache coherence protocol. As we describe
them, note that, to minimize traffic, when a cache instance
evicts a data item, it does not inform the home.
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Fig. 5: Coherence operations in Concord. Dashed lines indicate
control messages, while full lines indicate data transfers.

Local read hit. It occurs when a read finds the data item in the
local cache instance (Figure 5a-1). The local cache instance
provides the data item.

Remote read hit. When a read does not find the data item
in the local cache instance (Figure 5a-2), the cache agent
forwards the read to the home cache agent of the data item
( 1 - 3 ). If the home has a directory entry for the data item,
this is a remote read hit. The directory entry can be in state
S or E. Assume that it is in state S. In this case, the home
cache agent gets the data item either from the local cache
instance (if the home cache instance has it) or from the global
storage (otherwise). The directory then marks the requesting
cache agent as a sharer ( 4 ), and forwards the data item to
it ( 5 ). The requesting cache instance loads the data item in
state S and passes it to the function process ( 6 ).

Assume, instead, that the data item is in state E in the
directory. The home cache agent gets the data item from the
owner cache instance, which downgrades its state to S. Both
the requesting cache agent and the previous owner are marked
in the directory as sharers in state S. The data item is then
forwarded to the requesting cache instance, which loads it in
state S. Note that, because of a cache eviction, the owner cache
agent may respond that it does not have the data item anymore.

In this case, the home cache agent gets the data item from
storage, marks the requesting cache agent as sharer in state E
and forwards the data item to the requester, which loads it in
state E.

Read miss. When a read misses in the local cache and, on
reaching the home, finds that the directory has no entry for the
data item (Figure 5a-3), this is a read miss ( 1 - 3 ). The home
cache agent fetches the data item from global storage ( 4 ),
creates a directory entry for the data item, sets the requesting
cache agent as sharer in state E ( 5 ), and sends the data item
to the requesting cache instance ( 6 ), which loads the data
item in state E and passes it to the function process ( 7 ).

Local write hit. When a write finds the data item in the local
cache, this is a local write hit. The data item can be in state E
or S. If it is in E state, the write updates the local cache and
propagates to global storage, bypassing the home. The local
cache agent does not accept external requests for the data item
until the storage acknowledges the update.

If the data item is in S state (Figure 5b), the write updates
the local cache and is propagated to the home cache agent
( 1 - 3 ). The home cache agent checks the corresponding di-
rectory entry, sends invalidations to any sharer cache instance
( 4a ), and propagates the update to global storage ( 4b ). All
sharer cache instances invalidate their copies and then send
acknowledgments to the home ( 5a ). When the home cache
agent receives all acknowledgments (including one from the
storage), it updates the directory to mark only the requesting
cache agent as owner in state E ( 6 ). Then, the home responds
to the requesting cache agent ( 7 ), which marks the state of
the local copy as E and informs the function process ( 8 ).

Remote write hit. When a write does not find the data item in
the local cache instance, the cache agent forwards the update
to the home cache agent of the data item. If the home has
a directory entry for the data item, this is a remote write
hit. Then, the transaction consists of the home cache agent
sending invalidations to the current sharers and propagating
the update to global storage. The action is slightly different
depending on whether the directory entry has an owner in
state E or multiple sharers in state S. In the first case, the
home cache agent needs to send the invalidation to the owner
and receive the acknowledgment before sending the update
to global storage; in the second case, the home cache agent
can send the invalidations to all the sharers and the update to
global storage in parallel. In either case, when the home cache
agent has received all the acknowledgments (including the one
from the storage), the transaction follows steps 6 , 7 , and

8 of the local write hit.

Write miss. When a write misses in the local cache and, on
forwarding the update to the home, finds that the directory has
no entry for the data item, this is a write miss. The home cache
agent propagates the update to global storage. On receiving
the acknowledgment from the storage, the home cache agent
creates a directory entry for the data item, sets the requesting
cache agent as owner in state E, and sends an acknowledgment



to the requesting cache instance, which marks the entry in the
local cache in state E and informs the function process.

We have seen that, when a node writes to a data item that is
in state E in its local cache instance, the update propagates to
storage directly while bypassing the home. This design is faster
than having to go through the home. It exploits the common
case when a node keeps updating the same data item while
no other node is accessing the data item. It is also race free
because any future read or write to the data item by another
node must access the cache instance of the owner node before
reading the data item or updating storage, respectively.

In all other writes, the home cache agent is informed of
the update and acts as the point of serialization for writes
to that data item. If multiple nodes want to update the data
item concurrently, the home processes one write operation at
a time, and waits until all nodes acknowledge the invalidation
and the global storage is updated, before signaling that the
write operation is completed. This eliminates any data races.

In theory, sending invalidations can slow down write trans-
actions in Concord. However, in a write-through protocol (used
in both Concord and the state-of-the-art [70]), the overall write
latency is typically dominated by the update to the global
storage and its acknowledgment. Indeed, except in the case
when there is a single sharer in state E, storage update and its
acknowledgment happen in parallel with sending invalidations
and receiving acknowledgments from the sharers—therefore
hiding the cache invalidation latency. If the number of sharers
is so high that the invalidations to S nodes and their acknowl-
edgments are on the critical path, Concord could potentially
fall back to a versioning coherence protocol [35], [70], but we
have not evaluated it. We evaluate the cost of invalidations in
Section VI.

3) Support for External Reads/Writes: Concord allows
other cloud workloads to share data with serverless functions
via global storage, through what we call external reads/writes.
When users deploy their FaaS applications to Concord, they
specify which storage locations are going to be used by the
applications (e.g., folders in Azure Blob Storage [59]). Then,
the system registers a listener FaaS function that is invoked
on every storage update (including external writes) on these
locations [63]. When the listener is invoked, it first checks if
the write was triggered by a FaaS function or from an external
application. If the latter, the listener forwards the update to the
application controller. The controller forwards the update to
the correct home cache agent, which handles the external write
as a local write. Thus, even with external writes, functions
never operate on stale data.

D. Dynamic Coherence Domains

We call the set of cache instances of an application a
coherence domain. In Concord, the coherence domain of an
application changes over time. This is because a cache instance
is ephemeral: it is created when the first function instance of
the application is loaded into the node, and it is destroyed
when all the instances of all the functions of the application are
removed from that node. A node controller removes a function

instance from a node when its grace period expires (e.g., after
10 minutes without being used [72]) or when there is no space
for the instance in the node. To ensure correctness, all cache
instances must know what is their current domain and how to
compute the homes of all the data items in their application.

Consistent hashing enables cache instances to enter and
leave a domain with minimal disruption [44]. Consider a cache
instance leaving a domain. The instance first synchronizes with
all the other cache instances in the domain, informing them
about its departure. Then, such instances remove from their
local directories any sharer pointer pointing to the node of
the departing cache instance. In addition, the instances recom-
pute the new home for all the data items that were homed
in the departing cache instance. Note that, with consistent
hashing, all nodes can compute the new data item homes
in a distributed, decentralized manner. Then, the departing
cache instance sends the directory entries of all the data items
homed locally to the corresponding new home, and waits
for an acknowledgment from the new home. Note that all
the data items are re-homed into the same node—i.e., the
next node clockwise on the hash ring. Finally, after all the
data items have been moved, the remaining cache instances
synchronize again. By using this two-phase commit protocol,
Concord avoids data races. Concord takes similar steps when
the domain expands after a new cache instance is created.

E. Memory Use in Concord

Concord does not reserve extra memory for the software
caches. The size of the cache for an application is dynamically
adjusted by leveraging the unused memory from all the co-
located containers that belong to the same application. As a
result, the cache does not increase the application’s memory
footprint. Large objects are cached only if sufficient unused
memory is available, and they are evicted if their memory is
needed for regular application operations. When the cache size
reduces dynamically, some data items and directory entries
may be evicted. However, no data item changes homes and,
therefore, there is no rehashing of the data.

If caches were to increase an application’s memory foot-
print, we could run the risk of having to evict containers due to
lack of memory space. The result could be more container cold
starts, which are more expensive than remote storage accesses.

F. Fault Tolerant Distributed Coherence Protocol

As core failures happen rarely in multicore processors,
hardware coherence protocols do not typically include features
for fault tolerance [26]. However, the software-based coher-
ence protocol in a distributed environment must be robust to
unexpected node failures. Hence, Concord is equipped with
mechanisms to detect failed nodes and recover from them.
Additionally, Concord ensures that the data remains consistent
on a node failure. We consider each of the two aspects in turn.
Note also that serverless functions have inherent resilence to
node failures due to their idempotent design principle.

First, to detect node failures, Concord uses a distributed
coordination service that manages the membership of the
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Fig. 6: Failure detection and recovery in Concord.

nodes. Figure 6 shows the mechanism. The coordination
service periodically sends heartbeats to all the cache agents of
each of the active applications. When a node does not respond
to heartbeats, Concord assumes that the node failed. Then, it
informs all the cache instances in the coherence domain(s) of
the application(s) in the failed node. We use ZooKeeper [38]
in our implementation. As ZooKeeper provides hierarchical
namespaces, each application in Concord is treated as a
separate group, and ZooKeeper manages the membership of
cache instances per individual application. For example, in
Figure 6, when Node 3 fails, ZooKeeper informs only the
other cache instances of App1, which happen to be in Nodes
0 and 2. If Nodes 0 and 2 also run other applications, the
cache instances of those applications are not informed.

When the cache instances of an application receive a
notification that one of the cache instances in their domain
was in a node that failed, they first check if they locally
cache any data homed in the failed cache instance. As caches
are write-through, it is guaranteed that the data item in the
global storage is up-to-date, and the only lost information is
the directory. Hence, the cache agents in the domain evict
from their caches all the data items homed in the failed
cache instance. Then, they form a new consistent hash ring as
described in Section III-D. In the example of Figure 6, Nodes
0 and 2 detect that locally cached data item B was homed in a
cache instance in failed Node 3. Thus, they evict B from their
caches. After recomputing the consistent hash ring, the figure
assumes that B is now homed in Node 2.

Second, Concord ensures that the data remains consistent
on a node failure. Node failures during reads are simple to
handle, as reads at most change the directory state. During
recovery, if the updated directory was lost, all sharers evict
the data items in their caches that were homed in the failed
node; if the reader node was lost, the directory removes the
reader node from the list of sharer nodes for all the data items.

Writes are more complex, as they additionally modify the
state of data items. The critical case is when the home node
fails while processing a write that could have updated global
storage but failed to invalidate all the cached copies. In this
case, Concord must prevent the case of some cache instances
reading the new value of the data item while others can still
read the old value of the data item. This is prevented as
follows: no cache instance is allowed to read the global storage
for a data item that was homed in the failed node (and therefore

potentially read a new value) until the recovery is complete.
During the recovery, as nodes discover the failed node, they
evict from their caches the data items homed in the failed node.
By the time the recovery is over, all the old versions of the data
item in cache instances are explicitly invalidated and a new
home is declared. The next read will necessarily go through
the new home, which will read the latest data item value from
storage. All subsequent reads will see the new value while no
read will see the old value. No data inconsistency will occur.

G. Coherence-Aware Invocation Scheduling

In conventional systems, function invocations are typically
scheduled on a node that has a warm container of the
function to minimize cold start overheads [43]. In high-load
environments, a given function may have concurrent instances
on several nodes. In this case, existing systems schedule an
invocation randomly on any of the nodes that have an instance
of the function. These invocations may operate on the same or
different data, typically determined by the invocation’s inputs,
which are visible to the provider. With random scheduling,
invocations operating on the same data may be scheduled
on different nodes. This results in frequent remote accesses,
increased number of cache instances sharing data and, conse-
quently, a larger number of coherence invalidations.

Concord proposes coherence-aware invocation scheduling.
When the load balancer receives a function invocation, it picks
the function instance to send it to as follows. It computes the
hash of the invocation inputs and uses the result to pick one
of the nodes that has an instance of the function. By doing
this, the system maximizes the chances of local cache hits.

It is possible that the chosen node is overloaded. In this
case, the load balancer does not send the invocation to it.
Instead, it tries with another hash function and picks the
resulting node. If multiple tries picked overloaded nodes, the
load balancer picks a random non-overloaded node. Overall,
Concord densely packs the invocations of a function operating
on the same data, to minimize data transfer overheads and
coherence traffic.

H. Verification of the Software-Based Concord Protocol

During fault-free operation, the software-based Concord
protocol follows the well-established ESI protocol from hard-
ware schemes. The corner cases occur on node failure, system
recovery, and coherence domain expansion/reduction. The
actions taken in these cases are described in Sections III-D
and III-F. To verify all cases, we use the TLA+ formal
specification and verification language, and model-check the
protocol in TLC [48]. With TLA+, we first specify all the
states and possible actions from all the states. Specifically,
we use Exclusive, Shared, and Invalid for the cache states,
Active and Failed for the node states, Sharers+Ownership
for the directory states, and ActiveInstances for the set of
nodes that participate in a coherence domain. We model the
events {Local/Remote}{Read/Write}Hit, {Read/Write}Miss,
DataEvict, NodeFail, RecoverOnFail, and DomainChange.



We check for no deadlock and no livelock concurrency
conditions, and prove that they always hold. The checks are
performed under fault-free operation and under node failure.
We next describe two corner cases and show how Concord
ensures forward progress.

First, consider a Node A waiting for an invalidation ac-
knowledgment from a failed or unreachable Node B. In
Concord, Node A will not wait forever. If Node B has
failed, Concord’s coordination service (i.e., ZooKeeper) will
detect it through its heartbeats. If, instead, Node B is simply
unreachable from A, Node A will timeout and inform the
Application Controller to delete the cache instance on Node
B. In both cases, the coordination service then notifies all
the nodes in the same coherence domain(s) that the cache
instances in B left the domain(s). Then, Node A cancels the
waiting request and all the nodes perform the actions described
in Section III-F

Second, consider that a read from Node A misses in the
local cache, is forwarded to the home Node B and, in the
meantime, the cache instance in Node B leaves the coherence
domain. In this case, Node B cannot respond to the read
request. In Concord, Node A does not wait forever. Node B
initiates the creation of a new consistent hash ring as explained
in Section III-D. In the process, all the nodes check if they
have any outstanding operations with Node B. If a node, such
as A does, it cancels the read, recomputes the correct new
home, and reissues the operation. All these operations are
performed in software.

We also check two data consistency invariants. The first one
is that the coherence states in all the caches are correct. The
second one is that a read to a valid cache location returns the
value last written to it.

IV. UNLOCKING NEW CAPABILITIES WITH CONCORD

We further leverage Concord’s coherence protocol to unlock
two new capabilities in FaaS environments: transactions and
communication-aware function placement.

A. Support for Transactions

Transactions could be useful in many FaaS applications,
such as banking and online shopping. However, current FaaS
systems do not inherently support transactions. To execute
sections of code atomically, users need to write the code in
a manner that guarantees atomicity. For example, with AWS
Saga patterns [13], users write additional functions to detect
transaction violations and roll back to the correct state. State-
of-the-art proposals for transactions log all the storage accesses
that happen within a transaction to enable safe rollbacks (e.g.,
Beldi [14]) or use global storage locks. Both practices can
penalize performance due to the logging overheads and the
reduced storage availability due to the locks.

The Concord coherence protocol can automatically and
user-transparently ensure transaction atomicity, improving pro-
grammability while delivering high performance. The user
only needs to specify the beginning and end of the trans-
action. A transaction can be a piece of a function, a whole

function, or multiple functions of an application. Then, the
Concord caching layer monitors data accesses and determines
if accesses from any function conflict with the accesses of the
transaction.

In Concord, while a process P1 is executing a transaction,
every data item that it reads or writes is recorded in the local
cache instance as Speculatively Read or Speculatively Written,
respectively, and marked with the ID of the process. No
other process P2 executing the same application, either locally
(and, therefore, accessing the same local cache instance) or
remotely (and, therefore, accessing a remote cache instance
that is kept coherent with the Concord protocol) is allowed to
conflict with P1. Specifically, if P2 attempts to write a data
item that has been speculatively read by P1, or attempts to
read or write a data item that has been speculatively written
by P1, the transaction in P1 is squashed. Conflicts between
two local processes are trivially detected on access to the
local cache instance; conflicts between a local and a remote
process are detected through the Concord cache coherence
protocol: a locally-cached speculatively read data item receives
an external invalidation or a locally-cached speculative written
data item receives an external read or an invalidation.

Speculatively written data items remain buffered in the local
cache instance and are not propagated to global storage. If a
transaction is squashed, all its speculatively written data items
in the local cache instance are discarded, and their Speculative
bits and process ID field are cleared. The transaction can then
be re-executed.

If a transaction completes, it proceeds to commit. For this,
the runtime grabs a global lock to ensure that commits are
serialized. In addition, it locks the directory entries for the data
items accessed in the transaction. Then, the runtime forwards
all the updates of the transaction to the global storage, and
clears the corresponding Speculative bits and process ID fields.
After this, the directory entries are unlocked and the global
lock is released.

To ensure livelock freedom, forward progress, and fairness,
Concord uses known techniques from software transactional
memory [34]. They include exponential back-off on conflict
and priority increases after multiple squashes.

Users must ensure that a transaction execution has no side
effects beyond storage accesses and invocations of functions,
such as HTTPs or other system calls. One could automatically
detect these side effects and prevent them from being globally
visible while the transaction is in progress, using techniques
similar to those proposed in SpecFaaS [78]. We leave this
exploration for future work.

B. Communication-Aware Function Placement

Conventional FaaS systems place different functions on
nodes in the cluster independently from each other. This
means that two functions that interact in a producer-consumer
manner may well be placed on different nodes. In this
case, performance suffers due to communication overheads. A
higher-performance solution would co-locate both functions
on the same node, to reduce network overhead and even



allow them to communicate via shared memory instead of
via network RPCs [55], [81], [83]. Unfortunately, providers
cannot easily co-locate producer-consumer functions since, for
privacy reasons, they do not know which opaque-box functions
communicate with each other.

Concord proposes Communication-Aware Function Place-
ment to reduce communication overhead while still main-
taining function privacy. The idea is to monitor coherence
messages and use this coherence traffic to transparently iden-
tify functions that frequently interact with each other. These
functions are then co-located in the same node. For example,
if one function keeps writing to certain locations and a
second one keeps reading these locations, we have identified
a producer-consumer pattern.

Concord monitors coherence messages and builds a
Producer-Consumer Table (PCT), which lists small sets of
functions that frequently communicate with each other. We call
them Paired functions. Concord consults the PCT to decide
where to place function instances. Specifically, when a cluster
receives a new invocation of function F , Concord checks if
there is already an available instance of F to serve it. If so, the
instance is re-used, avoiding a cold start. Otherwise, Concord
uses the PCT to place the new instance of F in the cluster. For
this, it first checks if the cluster has an instance of a function
paired with F . If so, Concord places the new instance of F
on the same node to reduce communication overhead. If no
such instance exists, Concord anticipates the resource needs
of a Paired function and places the new instance of F on a
node that can accommodate it plus a Paired function instance.

Overall, Concord uses both communication-aware function
placement and coherence-aware invocation scheduling (Sec-
tion III-G) to minimize communication overheads.

V. EVALUATION SETUP

We evaluate Concord on OpenWhisk [1] in a 16-node
cluster. Each node is an Intel Xeon Silver server with 20 cores,
192GB DRAM, and a 128MB LLC. It runs Ubuntu 20.04.
Evaluated Systems. We compare Concord to the state-of-
the-art Faa$T [70] and OFC [65] designs (Section II). For all
systems, we use write-through caches and an LRU replacement
policy. We use an optimized Faa$T implementation that caches
the version numbers of data items in the home [70], rather
than having to fetch them from storage. All systems run on an
optimized OpenWhisk implementation that supports the open-
source MXFaaS [77] serverless framework. Hence, the cold
start and scheduling overheads are minimized.
Evaluated Applications. We evaluate Concord with the 7
multi-function applications shown in Table II. Each function
is deployed with the minimum amount of memory allowed
with OpenWhisk (128MB), and all functions use less than
this amount of memory throughout their whole execution. We
use Azure Blob Storage [59] as the storage service for all the
functions. The distribution of storage accesses is 80% reads
and 20% writes with 5% read-only objects, which is the same
as in Azure [70].

TABLE II: Serverless applications used in the evaluation.

Application Description
TrainT [4] Book, cancel, or get remaining train tickets.
eShop [80] Web e-commerce to browse and buy items.
ImgProc [85] An image thumbnail generator pipeline.
VidProc [65] Distributed video processing benchmark.
HotelBook [28] A hotel reservation application.
MediaServ [28] Review, rate, rent, and stream movies.
SocNet [28] Social network application.
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Fig. 7: Average application request latency in OFC, Faa$T,
and Concord normalized to OFC. The numbers on top of the
Concord bars are the absolute request latencies in ms.

We evaluate Concord under low, medium, and high load
levels, corresponding to an average of 500 requests per second
(RPS), 1250 RPS, and 2000 RPS, respectively, received by the
cluster. These load levels are chosen based on load testing: the
low, medium, and high loads drive the CPU utilization of the
cluster to about 25%, 50%, and 70%, which is representa-
tive [22], [33], [53], [69]. We use the Poisson distribution to
model the request inter-arrival time [7], [18], [32], [71], [74],
[76], [79], [87].

VI. EVALUATION

In this section, we evaluate Concord’s performance, scala-
bility, memory consumption, robustness to coherence domain
changes, sensitivity to available cache size, transactional sup-
port, and communication-aware function placement.

A. Concord Performance

We measure the applications’ average request latency and
throughput. The latency is measured end-to-end, from when
the client sends a request until the result is received.

Application Latency. Figure 7 shows the average application
request latency in OFC, Faa$T, and Concord with different
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Fig. 8: Cluster throughput of OFC, Faa$T, and Concord
measured in kilo requests per second (kRPS).

system loads normalized to OFC. On top of the Concord
bars, we show the absolute latencies in ms. We see that OFC
and Faa$T have similar latencies. While Faa$T allows a data
item to be cached in multiple caches, it does not reduce the
average latency over OFC because it has significant coherence
overheads. On the other hand, Concord’s optimized caching
protocol minimizes network overheads and results in a much
lower latency for all applications and across all loads. On
average, Concord reduces the average application latency over
OFC by 2.1×, 2.4×, and 2.6× for low, medium, and high
load, respectively, and over Faa$T by 2.2×, 2.5×, and 2.7×
for the same loads. Concord attains higher reductions for
applications that frequently read small data, such as TrainT and
SocNet; in these cases, the impact of the Concord techniques
is more notable. Also, Concord’s latency reductions increase
with higher system loads.

Cluster Throughput. Concord’s reduced request latencies
result in improved overall cluster throughput. We define cluster
throughput as the rate of requests that the cluster can process
before violating the applications’ Service Level Objectives
(SLO). Similar to prior art [23], [51], [64], we define SLO
as five times the application latency on an unloaded cluster.
Figure 8 shows the cluster throughput of OFC, Faa$T, and
Concord. On average, Concord improves the throughput over
OFC and Faa$T by 1.7× and 1.8×, respectively.

Characterization of Concord Operations. To understand the
performance of Concord, we now characterize some of its
operations. Unless otherwise indicated, the data corresponds to
the average of low, medium, and high load conditions. First,
we note that Concord enables fast reads. Recall that a read
request in Concord can result in a local hit, a remote hit, or
a remote miss. It can be shown that, on average, a local hit,
a remote hit, and a remote miss for a read in Concord take
1.6ms, 3.1ms, and 32ms, respectively.

Table III shows the distribution of read accesses per ap-
plication for (i) Concord without coherence-aware invocation
scheduling (Section III-G) and (ii) the complete Concord. In
both cases, the techniques of Section IV are not included. We
can see that, in Concord, on average 83% of read requests
are local hits. Even without the proposed coherence-aware
invocation scheduling, on average 75% of read requests are
local hits. With so many accesses satisfied with low latency,
Concord delivers high performance.

Write requests are less frequent, and can be slightly slower
due to the invalidation messages sent to sharers. Figure 9
shows the average and maximum number of invalidations sent

TABLE III: Distribution of read operations in Concord without
coherence-aware invocation scheduling (C-NoCAS) and in
Concord (C).

Local Hit [%] Remote Hit [%] Remote Miss [%]
(C-NoCAS — C) (C-NoCAS — C) (C-NoCAS — C)

TrainT 72 — 84 21 — 9 7 — 7
eShop 68 — 75 23 — 16 9 — 9
ImgProc 76 — 85 18 — 9 6 — 6
VidProc 73 — 81 19 — 11 8 — 8
HotelBook 82 — 90 13 — 5 5 — 5
MediaServ 79 — 88 15 — 6 6 — 6
SocNet 73 — 81 21 — 13 6 — 6

Average 75 — 83 18 — 10 7 — 7
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Fig. 9: Average and maximum number of invalidation mes-
sages sent per write operation in Concord.

per write operation throughout the execution of the evaluated
applications. Averaged across all applications, an average write
operation causes 1.2 invalidations, while the maximum number
of invalidations per write is 4.9. Recall that our platform has
16 nodes.

Finally, Figure 10 compares the average request latency
for Concord without coherence-aware invocation scheduling
(Concord No CAS) and Concord for the different applications.
The bars are normalized to Concord No CAS and the Concord
bars are annotated with the average request latency. Concord
No CAS tries to co-locate invocations of the same function
on the same subset of nodes. Thus, it already captures some
locality. However, it does not consider the specific data that
these invocations operate on. Co-locating invocations that
potentially operate on the same data increases data reuse,
which results in higher local cache hits. As we see in the figure,
coherence-aware invocation scheduling reduces the average
request latency by 11%.

B. Write Operation Scalability

In this experiment, we measure the latency of write opera-
tions to shared data in Concord as we change the cluster size
from 1 to 30 nodes. All nodes first load the data item in their
caches and then one of them writes, invalidating all the other
nodes. The home node sends the invalidations and receives
the acknowledgments in parallel with propagating the write to
global storage and receiving the acknowledgment from global
storage. As a reference, a round trip to storage takes around
30ms, while the round trip of an invalidation to another node
and its acknowledgment takes around 2ms.

Figure 11 shows the average latency of these writes across
all the evaluated applications for Concord and Faa$T. Recall
that a write in Faa$T sends the update to the home and then
to the global storage, but does not invalidate the sharers. For
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Fig. 10: Normalized average request latency in Concord with-
out coherence-aware invocation scheduling (Concord No CAS)
and in Concord. The numbers on top of the Concord bars are
the absolute latencies in ms.
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Fig. 11: Average time to perform a write operation on a data
item shared by all nodes and a read operation that hits in
the local cache for different numbers of nodes in Faa$T and
Concord.

comparison, the figure also shows the latency of a read hit to
the local cache in both Concord and Faa$T.

The figure shows that, with few nodes, a write in both
Concord and Faa$T has the same latency of 30ms—which
is determined by the access to the global storage. As the
number of nodes increases, a write in Faa$T maintains the
same latency, since no node is invalidated. In Concord, the
latency increases, reaching 32.4ms for 30 nodes. The reason
is that more invalidations are being sent. However, the latency
increase is modest because invalidations are sent in parallel
with the access to global storage.

The figure also shows the latency of read hits, which does
not change with the number of nodes. It is 3.8ms in Faa$T
and 1.6ms in Concord. The latency is Faa$T is higher because
even a local read hit needs to perform an access to the home
to check the version number. Overall, Concord speeds-up the
frequent read operations by more than 2× while slowing down
the less frequent write operations by at most 8%.

C. Concord Memory Consumption

Concord re-purposes the unused memory pre-allocated by
the functions of an application into the application cache.
Hence, users are not charged extra for the caches. However,
the amount of cache memory is limited by the amount of
unused memory. Fortunately, the unused memory is typically
significantly larger than the amount of memory needed by the
caches in Concord. Figure 12 shows the average and maximum
amount of memory consumed by a single cache instance.
Across all applications, the average and maximum sizes of
a cache instance are 6.2MB and 12.6MB, respectively. On the
other hand, the average unused memory per application in a
node is 56.8MB. Hence, a cache instance typically uses a bit
more than one tenth of the unused application memory.
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Fig. 12: Average and maximum memory consumed by a
cache instance of an application throughout the application’s
execution in Concord.
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Fig. 13: Throughput of the SocNet application when varying
the rate of cache instance removals (and additions).

D. Concord Coherence Domain Changes

Concord removes and adds cache instances to a coherence
domain transparently to the application. While such operations
take some time, they are not blocking. For example, on
average, the latency of removing a cache instance from a
16-node coherence domain and adding a new one is about
120ms, but all the nodes beyond the one being removed or
added do not stall unless they try to access a data item that
moves homes. Figure 13 considers the SocNet application
and shows the cluster throughput as we change the rate of
cache instance removal (and subsequent addition). We use a
coherence domain that extends across 16 nodes and randomly
select instances to evict and add them back. The figure shows
that Concord maintains high throughput until a removal rate
as high as 48 removals (and additions) per minute. The other
applications show similar performance trends.

E. Sensitivity Analysis

Available Node Cache Size. Figure 14 shows the speedup of
Concord over OFC with different node cache sizes at medium
load. We define speedup as reduction in average latency, and
show the results averaged across all applications. With very
small cache sizes (tens of KBs), Concord provides little benefit
due to frequent cache evictions. As the cache size increases,
the speedup increases, reaching 2.5. Once the cache captures
the application’s working set at about 6-7MB, further increases
in size provide little benefit.
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Fig. 14: Speedup of Concord over OFC with different cache
sizes at medium load, averaged across all applications.
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Fig. 15: Average application latency in Saga, Beldi, and
Concord with transactions. The numbers on top of the bars
are the absolute latency.

Remote Node Access Latency. The cluster used in our
experiments has whole-stack internode round trip latencies of
around 2ms. This is a typical latency in current datacenters.
If this round-trip latency is reduced to a few µs, the gains of
Concord over OFC or Faa$T decrease—since the additional
access to the home node required for most read operations in
OFC and Faa$T becomes cheaper. Such scenario could be the
case with rack-level CXL deployments.

F. Transaction Support

To evaluate transactions, we use five applications from AWS
samples [10]: Hotel Booking, Online Shopping, Account Reg-
istration, Online Banking, and Online Health Records. These
applications have large transactions: a transaction encloses
a sequence of 6-8 functions plus the scheduling and FaaS
platform overheads. Figure 15 shows the average application
latency when using transactions implemented with Saga [13],
Beldi [86], and Concord.

Concord outperforms the other schemes for two main
reasons. First, it detects transaction conflicts much faster,
thanks to using coherence messages; the other schemes detect
conflicts by re-reading the data (or logs) from the storage.
Second, Concord does not require the execution of additional
functions to clean-up an aborted state; it rolls back to the
correct state by just flushing its software caches. Overall,
Concord with transactions reduces the average application
latency by 54% and 20% over Saga and Beldi, respectively.

G. Communication-Aware Function Placement

To evaluate communication-aware function placement, we
cannot use the applications from Table II because they do not
have frequent producer-consumer patterns. Instead, we use a
new set of applications with such patterns from open-source
projects [45], [52]. These applications are: IoT Sensor Data
Collection, ML Sentiment Analysis, Video Processing, Map
Reduce, Event Streaming, and Illegal Recognizer. Figure 16
shows the normalized average latency of these applications
with Concord and with Concord plus our communication-
aware function placement policy. The numbers on top of
the bars are the absolute latencies in ms. We see that co-
locating the functions that communicate frequently with each
other can significantly reduce application latency. On average,
communication-aware function placement reduces the applica-
tions’ average latency by 25%. The reductions are higher for
the applications with shorter execution times, as the network
overheads dominate.
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Fig. 16: Normalized average application latency with Concord
and with Concord plus our communication-aware function
placement policy. The numbers on top of the bars are the
absolute latencies in ms.

VII. COMPARISON TO A FAULT-TOLERANT PROTOCOL

Apta [67] is a hardware-based cache coherence protocol
targeting CXL that uses write-through hardware caches for
fault tolerance. In this section, we create a software version of
Apta’s protocol using software caches, run it in our cluster of
Section V, and compare its performance to Concord. Apta uses
separate compute and memory nodes, and places the directory
in the memory nodes. Apta is described without explicitly
considering persistent storage (unlike Concord).

Apta introduces lazy invalidations, where the invalidations
issued by the directory on a write are moved out of the critical
path of the write—allowing the write to complete while some
caches may hold stale data items for a short window of time.
Apta then enforces coherence-aware scheduling, where the
memory nodes tell the scheduler not to schedule functions
that might use such data items, on the nodes that temporarily
have stale values of such data items.

Some additional differences between the extended imple-
mentation of Concord and Apta are that Concord introduces:
1) coherence-aware invocation scheduling (where a hash of
the function inputs determines the node where to schedule the
function, hoping to reuse state left by the same function with
the same inputs), 2) transaction execution (easy to support
because all accesses in Concord are recorded in software), and
3) communication-aware function placement (where Concord
learns producer-consumer function pairs and schedules them
together). On the other hand, Apta introduces locality-aware
scheduling (where a function is scheduled on the node where
its predecessors executed).

Due to the limited size of our cluster and to consider the
worst case for Concord, we compare Concord with 15 compute
nodes to the software version of Apta with 15 compute and 15
memory nodes in two cases. First, in Apta-Az and Concord-
Az, both systems need to propagate updates to Azure Blob
Storage (like in our Concord design). Second, in Apta-Mem
and Concord-Mem, updates are propagated only to memory
nodes (like in the Apta paper); in this case, we add 15
memory nodes in Concord-Mem as well. Figure 17 shows the
average application latency at medium load in all four environ-
ments normalized to Apta-Az. The Concord bars include the
communication-aware function placement optimization. The
numbers on top of the Concord-Mem bars are the absolute
application latency values in ms.

On average across applications, Concord-Az and Concord-
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Fig. 17: Average application latency in Apta and Concord
normalized to Apta-Az. The numbers on top of the Concord-
Mem bars are the absolute application latency values in ms.

Mem reduce the average application latency over Apta-Az
and Apta-Mem by 41.2% and 47.4%, respectively. Focusing
on the Mem environments, there are three reasons why Con-
cord is faster. First, Concord allows all nodes to continue
scheduling new function invocations without interruption, un-
like Apta’s approach with coherence-aware scheduling. On
average, Apta’s scheduler has only 8.9 out of 15 compute
nodes available for scheduling new invocations at a time.

Second, Apta adds scheduling overheads, as on every func-
tion invocation, the scheduler contacts all memory nodes and
checks which compute nodes are currently unavailable. Then,
it schedules the request on an available compute node. On
average, Apta increases the scheduler’s response time by 2.8×.

Finally, Concord’s coherence-aware scheduling and
communication-aware placement optimizations are more
effective than Apta’s locality-aware scheduling optimization.

In the Az environments, the fact than writes may have fewer
hops in Concord than in Apta directly affects performance.
Indeed, Apta’s write operations travel to both the memory
nodes (to check the directory) and to the Azure Storage; in
Concord, they go directly to the storage if they update a datum
homed locally or a datum in E state. This is the reason for the
E state in Concord’s protocol. On average, Concord reduces
the number of hops per write by 28.6%.

VIII. RELATED WORK

Distributed Caching. Researchers have proposed various
caching schemes in distributed systems [16], [17], [41],
[50], [54], [57], [84]. These proposals target environments
where the cache is an independent software system used by
long-lived web services. In contrast, Concord targets server-
less environments where caches are tightly coupled with
the highly-dynamic ephemeral function instances. Some prior
works target FaaS [46], [65], [68], [70], [73], [75], [82].
Most proposals do not provide coherent caches [46], [65],
[68], [73], [82]. Also, some designs introduce custom APIs
and make applications responsible for their data coherence
management [73]. We compare Concord to closely related
work, namely Faa$T [70] and OFC [65], throughout our paper.
If the developer annotates all read-only objects, Faa$T can
avoid version checks for such objects, potentially improving
performance. However, in the Azure traces [60], only 5%
of the objects are read-only. Thus, Concord still outperforms
Faa$T with annotations in this configuration.

Producer-Consumer Optimizations. SAND [7] and Faast-
lane [47] optimize producer-consumer patterns across the
functions of an application workflow. They do not optimize
the storage accesses to persistent objects. SAND [7] uses
a hierarchy of local and global per-function queues used
for local and remote communication, respectively, leading
to multiple overheads: (i) communication via queues is se-
rialized, creating bottlenecks in high-load scenarios, (ii) the
publish-based messaging is slower than RPCs, and (iii) the
hierarchy introduces multiple hops to read/write data when
the communicating functions are located on different nodes.
Our experiments show that, with conventional scheduling,
Concord reduces the average latency of SAND by 8% for
workflows with producer-consumer patterns. When Concord
adds communication-aware function placement, it reduces the
average latency of SAND by 31%.

Faastlane [47] consolidates all functions of an application
into a single container, enabling communication through loads
and stores with Intel’s Memory Protection Keys (MPK). This
approach performs similarly to Concord when all accesses hit
in the cache. However, it complicates resource management
and scaling since the functions within a container can have
diverse hardware requirements and software dependencies.
Leases have been extensively used in distributed systems [6],
[15], [31], [35]. A lease gives its holder cache the right
to read or read-write a cached object for a limited period
of time. When the lease expires, the cached object is self-
invalidated and the cache must renew the lease to cache the
object again. All lease designs induce lease renewal overheads
that commonly include communication with the storage server
that grants them.

Scheduling. Proposals on locality-aware FaaS scheduling [27],
[43] focus on scheduling same-function invocations on the
same nodes to minimize cold-starts. Palette [5] co-schedules
functions that operate on the same data, providing a new API
for users and a load balancer that takes this hint into account.
Concord transparently prioritizes the co-location of function
invocations that have the same input parameters.

IX. CONCLUSION

This paper proposes Concord, a distributed software caching
system for FaaS environments. Concord proposes a directory-
based distributed coherence protocol for software caches.
The protocol minimizes coherence traffic, reduces contention
points, and is robust to failures and frequent creation/removal
of application cache instances. Concord on average speeds-up
FaaS execution by 2.4× and improves throughput by 1.7×,
while using 6.2MB of idle application memory.
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