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ABSTRACT
Different caches for serverless computing are typically effective for

their target use cases. However, they do not generalize well to the

diverse range of serverless applications and their workloads. To

address this issue, we present the first taxonomy of data caching

designs for serverless systems. The taxonomy dissects the com-

plex design space into six dimensions, each with multiple design

choices. The taxonomy enables us to understand the impact of in-

dividual design decisions on the overall cache performance. Based

on the taxonomy, we introduce the Unified Cache (UniCache)—a
general-purpose caching system for serverless environments. Uni-

Cache dynamically reconfigures itself by intelligently selecting the

cache organization for each application and thus specializes itself

to the application requirements and workloads using a hierarchy

of reinforcement learning models. We implement UniCache on two

serverless platforms and evaluate it with diverse applications. Com-

pared to a state-of-the-art baseline, UniCache on average speeds-up

application execution by 5.7× and improves throughput by 4.6×.

1 INTRODUCTION
Motivation. The rapid growth of serverless computing or function-

as-a-service (FaaS) is due to its ability to provide application flexi-

bility, fine-grain billing, and high resource utilization [9, 14]. With

FaaS, users only need to upload their application code to the cloud

provider, which is responsible for securing all the necessary re-

sources needed to execute the code. The execution unit is a function,

which runs in a container created and scheduled on demand in an

event-driven manner. Serverless applications are then composed of

multiple standalone functions that communicate with each other.

All major cloud providers offer FaaS environments, such as AWS

Lambda [4], Microsoft Azure [16] and IBM Cloud Functions [8].

Due to their ephemeral nature, serverless functions were ex-

pected to be stateless services [5, 17]. This property enables high

availability, fast scalability, and fault tolerance. However, the only

way to preserve state across invocations of a given function is via

global storage. In addition, serverless functions in an application

often cannot communicate with each other arbitrarily; instead, they

communicate indirectly via global storage [13]. Therefore, the in-

teractions between functions and global storage are on the critical

path and often determine the overall application performance.

Related work. To mitigate the overhead of storage accesses, a pop-

ular approach is to cache data. Substantial prior art explored vari-

ous aspects of data caching in distributed systems (e.g., [6, 12, 23]).

These techniques are typically very effective at speeding-up ap-

plication execution. However, their focus is on long-lived applica-

tions and, thus, they are unlikely to handle the highly-dynamic

ephemeral nature of FaaS environments efficiently. Recently, re-

searchers have proposed caching schemes designed for FaaS sys-

tems [11, 18, 19, 21]. However, majority of these schemes require

user-configurations [11, 21] or transparently set the static cache

configuration that remains unmodified throughout the lifetime of

applications [18, 19].

These schemes are highly optimized for the specific use case they

target, e.g., ML workloads [19]. On the other hand, heterogeneous

serverless workloads have high diversity with large fluctuations

over time, e.g., the size of the data used by a function can range

from a few bytes to a few GBs. Further, the data can be accessed by a

single function invocation or by hundreds of concurrent invocations.

Finally, the data usage can vary from read-only across all functions

of the application to frequently updated by a single function. As

a result, designing a general, broadly usable high-performance

caching system for FaaS environments is challenging.

Our work. To address this challenge, this paper presents the first

taxonomy of data caching designs for serverless environments. The

taxonomy systematically dissects the design space in six dimen-

sions, each with multiple decision choices. These dimensions define

how basic cache operations, such as data coherence, replacement,

and replication are performed. The taxonomy enables us to under-

stand the impact of individual design decisions on the overall cache

performance, identify the relevant metrics for each design cate-

gory, and map application- and system-level characteristics to the

right cache configuration. The taxonomy sheds light on overlooked

design aspects due to specializations of prior art.

Based on the principles derived from the taxonomy, we develop

Unified Cache (UniCache), the first comprehensive caching frame-

work designed for FaaS environments. Caches in UniCache are

organized into independent cachelets, i.e., cache instances associ-
ated with a given function or application. Each cachelet has its own

configuration representing a set of values for the six taxonomy

dimensions. This modular architecture enables effective integration

of new protocols for any of the taxonomy dimensions, facilitating a

plug-and-play paradigm that augments the caching system’s capa-

bilities without disrupting its operational integrity. As an example,

a new cache replacement or cache coherence algorithm can be

easily integrated without affecting the rest of the UniCache system.

UniCache is an automatically reconfigurable distributed caching

scheme. It continuously monitors the application characteristics,

such as data sizes and read/write ratio, and the system state, such

as the load and network bandwidth. Then, the system periodically

uses the collected information to recompute the best cachelet con-

figuration using a set of reinforcement learning (RL) models. RL

models are organized into a hierarchy: individual taxonomy dimen-

sions have independent models, and a top-level model serves as

a moderator, integrating the outputs of the individual models to

determine the optimal configuration for each cachelet. By leverag-

ing RL models, UniCache improves its robustness compared to the

fine-tuned rigid heuristics. Moreover, new applications and new

taxonomy categories protocols can be supported without the need

to re-profile the system, making the scheme highly evolvable.

Results. UniCache can be integrated with existing serverless plat-

form via minimal modifications. We implement UniCache on top
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of OpenWhisk [1] and KNative [3]. UniCache does not require

any hardware support, OS support, or changes to user-provided

functions. We evaluate UniCache with a diverse set of serverless

applications from FunctionBench [10], TrainTicket [2], Serverless-

Bench [24] and vSwarm [22]. UniCache on average speeds-up appli-

cation execution by 5.7×, reduces the P99 tail latency by 4.3×, and
improves throughput by 4.6× over a state-of-the-art baseline [19].

Contributions. This paper makes the following contributions:

• A first taxonomy of cache designs for serverless computing;

• UniCache, a generic cache framework which enables dy-

namic, intelligent reconfiguration of caches to specialize

them for different severless applications;

• An implementation and evaluation of UniCache.

2 TAXONOMY OF CACHING SCHEMES
The optimal organization of a distributed cache in FaaS environ-

ments at a given time depends on both the application and system-

level characteristics. To identify the optimal organizations, we start

by analyzing the design space. Specifically, we propose the first
taxonomy of distributed caching organizations for FaaS environ-

ments. Researchers and practitioners can use the taxonomy to (1)
understand the impact of individual design decisions on overall

cache performance, (2) devise metrics of interest for each design

point, and (3) map an application’s characteristics to the best cache

organization. Table 1 shows the taxonomy. It has six dimensions.

For each dimension, the table shows the design points and some

metrics that determine the optimal design point. In the following,

we define Cachelet as a cache instance with its own independent

configuration associated with a single function instance or a group

of instances co-located in the same node.

1. Cachelet Scope. Concurrently active containers on a given

node can be instances of the same function, instances of different

functions within the same application, or instances from different

applications. Hence, a cachelet can be (1) Per-Instance—associated
with a single instance, (2) Per-Function—shared among all the in-

stances of the same function in the node, (3) Per-Application—shared
among all the instances of all the functions of the same application

in the node, or (4) Shared–shared among all the instances in the

node. Depending on the data sharing patterns, different scopes may

work best. The more sharing in a cachelet, more cache space is avail-

able and cross-instance data prefetching can be exploited. However,

there is a higher chance of memory utilization unfairness and se-

curity implications (e.g., side channels) across users. Since Shared
cachelets allow sharing across applications from different users,

they are insecure and, hence, excluded from further discussion.

2. Cachelet Write Policy. On a data update, the cachelet can em-

ploy two strategies to update global storage. First,Write-Through
caches immediately propagate the update to global storage, and

wait for the global update to complete before sending an acknowl-

edgment to the user. Second,Write-Back caches buffer the update,

send an acknowledgment to the user right away, and propagate the

update to global storage only when the dirty data is evicted from

the cachelet. Write-Through caches provide higher fault tolerance

and are simpler to implement. Write-Back caches typically improve

the performance, especially at high loads and large data sizes.

3. Cachelet Replacement Policy.When a cache runs out of space

and needs to evict an entry, it can use different policies, includ-

ing evicting (1) the oldest data (FIFO), (2) the least recently used

data (LRU ), or (3) the least recently used data of the lowest pri-

ority (Priority-LRU ). The priority can be determined, e.g., by the

data size or the level of burstiness. FIFO caches are the easiest to

implement, while LRU caches typically have higher performance.

Priority-LRU caches take into account that objects have various

sizes and different access patterns (e.g., bursty ones). Prior art has

explored LRU [19] and FIFO [7] policies, but has not considered

the non-uniform data sizes and access patterns commonly found in

serverless applications. Thus, Priority-LRU has not been proposed.

Other replacement policies, such as random or clock, can also be

integrated with UniCache as new independent modules.

4. Cachelet Coherence Protocol. When multiple cachelets in the
same or in different nodes operate on shared data, the system needs

to keep the cachelets coherent. To maintain cache coherence, the

system can use: (1) metadata (i.e., SequenceNumbers), or (2) directo-
ries using invalidations (DirectoryInvalidate) or updates (Directo-
ryUpdate). Figure 1 shows an example of protocol operation when

using sequence numbers (Figure 1a) or directories with updates

(Figure 1b). The example uses two coherent cachelets: Cachelet 𝑥

and the Home Cachelet (i.e., the one responsible to keep the meta-

data or the directory for the coherence domain). In the example,

Cachelet 𝑥 first read misses on datum 𝐴, then the Home Cachelet

writes 𝐴, and then 𝑥 re-reads 𝐴. We use a write-through policy.
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Figure 1: Two cachelet coherence protocols.

With sequence numbers, SeqNum, (Figure 1a), 𝑥 sends a read-

miss request to the home cachelet (1), which responds with 𝐴’s

value and (SeqNum) (2). Later, the home updates 𝐴 (3a) and writes

back 𝐴’s new value and new SeqNum to global storage (3b). After

this, as 𝑥 re-reads 𝐴, it hits locally. However, to ensure that 𝑥 has

the correct version, 𝑥 has to send a request for𝐴’s SeqNum to global

storage (or home) (4), which provides it (5). Then, 𝑥 compares the

received SeqNum to the one it has, finds that they are different (6),

and sends a read miss request to the home to get 𝐴’s correct value.

With directories and updates (Figure 1b), 𝑥 sends the read-miss

request to the home (1), which responds with 𝐴’s value (2a) and
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Table 1: Taxonomy of distributed data caching designs in serverless environments.

Category Some Design Points Metrics of Interest
Cachelet Scope Per-Instance Per-Function Per-Application Sharing across instances; Sharing across functions

Cachelet Write Policy Write-Through Write-Back System Load; Write Portion; Data Size; Fault Tolerance

Cachelet Replacement Policy FIFO LRU Priority-LRU Data Popularity; Data Size; Number of Cache Elements

Cachelet Coherence Protocol DirectoryInvalidate DirectoryUpdate SeqNumbers Data Size; Num. Sharers; Write Portion; Write Run

Replication Policy ReplData ReplCoh ReplData&Coh Fault Tolerance; System Load; Frequency of Changes

Coherence Domain Organization Flat Hierarchical Sharing across Nodes; Num. Sharers and Cache Elems

updates the directory (2b) adding 𝑥 as a sharer. Later, the home

updates 𝐴 (3a) and writes back 𝐴’s new value to global storage (3b).

As part of the transaction, the home also updates all the sharers,

including 𝑥 (3c). After this, as 𝑥 re-reads 𝐴, it satisfies the request

locally (4). The data present in 𝑥 is never stale.

Neither using sequence numbers nor using directories is better

in all cases. Using sequence numbers is undesirable when data sizes

are small (getting the sequence number already costs the same as

getting the data), when data is read-only (the sequence number

does not change) or when data is frequently written (sequence

numbers always mismatch). In these cases, directories are superior.

Directories are relatively less attractive when (1) there are many

sharers of the data and, therefore, frequent updates or invalidations

need to be sent—especially if the data size is large and the number

of writes is moderate, and (2) the available network bandwidth is

low. Similar to cache replacement policies, UniCache can integrate

additional coherence protocols, e.g., leases, with rest of the system.

5. Coherence Domain Organization. A cache coherence domain

can be Flat or Hierarchical. In the text we explain the directory or-

ganization. However, the same principles apply to other coherence

protocols, such as sequence numbers or leases. In a flat directory,

only the home cachelet can send invalidation or update messages

to other cachelets. Further, when a cachelet requires data, it only

communicates with the home cachelet. In a hierarchical directory,

the coherence domain is organized in clusters of cachelets, and each
cluster has a Leader cachelet. The home cachelet has information of

which clusters hold copies of the data, and sends invalidations or

updates only to their leaders. Then, leaders propagate the message

to all the nodes in the cluster as they do not have information of

which local cachelets have the data. When a cachelet requires data,

it communicates with its cluster leader, which either immediately

provides the data or requests it from the home cachelet.

Figure 2 shows a transaction where the home cachelet sends

an invalidation to all the sharers. Suppose that Cachelets 𝐴 and 𝐶

have the data and Cachelet 𝐵 does not have it. In the flat directory

(Figure 2a), the home sends an invalidation to both 𝐴 (1a) and

𝐶 (1b). In the hierarchical directory (Figure 2b), the home only

knows that the cluster led by 𝐴 has the data. Hence, it sends an

invalidation to 𝐴 (1), which then forwards it to both 𝐵 (2a) and 𝐶

(2b). Hierarchical exploits data sharing across cachelets, reduces

directory size, and mitigates a network bottleneck in the home. Flat
reduces the number of coherence messages and the data access

time when there is no data sharing across cachelets.

6. Replication Policy. The last axis involves trading off perfor-

mance for fault tolerance through the use of state replication. We

consider three cases: data replication, coherence replication, and
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Figure 2: Directory organizations in distributed caching.

both data and coherence replication. The first case applies to write-

back cachelets. We can choose to replicate dirty data in multiple

cachelets of the same coherence domain (ReplData). The second
case applies to coherence protocols. We can choose to replicate the

coherence state in multiple cachelets (ReplCoh). Finally, in write-

back caches we can replicate both dirty data and coherence state

across cachelets (ReplData&Coh). Replication increases fault toler-

ance: a cachelet can be lost and its dirty data or coherence state

can still survive. However, replication reduces performance, as it

requires more coherence messages and storage space.

3 UNICACHE DESIGN
With the insights from the taxonomy, we design UniCache, the
first automatically reconfigurable caching scheme for serverless

environments. UniCache achieves high performance by automat-

ically and transparently selecting optimal cachelet configuration

based on serverless applications. Every cachelet utilizes currently

unused memory of the constituting function instances (hence, its

size dynamically changes), and has its own configuration of each

dimension of the taxonomy. Each node in UniCache has one Server
Caching Agent (SCA) and as many Client Caching Agents (CCAs)
as cachelets. The SCA connects the local function Invoker of the

FaaS platform to the caching subsystem, while the CCAs handle

cache accesses from the function instances and manage cached

data. The SCA and CCAs monitor the application characteristics

and system state, and use the information and a set of RL models to

continuously recompute optimal configuration for each cachelet.

Server Caching Agent. When the local function Invoker creates

a new function instance, it informs the SCA. The SCA checks if

there is an existing cachelet that can serve the request by the newly

created instance. If so, the SCA allows the new instance to share

the existing cachelet, and increases the size of the cachelet by the
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amount of the unused memory of the new instance. Otherwise, it

creates a new cachelet for the instance. All global storage requests

issued by the new instance will be transparently intercepted by

the function’s runtime and redirected to the chosen cachelet. Sim-

ilarly, when the local Invoker removes a function instance from

the node, it informs the SCA. If there are other instances served

by the cachelet of the removed instance, the SCA just reduces the

size of the cachelet to exclude the memory of removed instance.

Otherwise, the SCA removes the cachelet along with the instance.

To maintain coherence, a cachelet needs to be aware of all the other

cachelets from the same coherence domain. The SCA broadcasts a

cachelet creation message to the SCAs in all the other nodes. When

an SCA receives such a message, it forwards it to the cachelets of

the given coherence domain. These cachelets now add the newly

created cachelet in the list of in-domain cachelets.

Client Caching Agent. A CCA is assigned to a cachelet. It com-

municates with the function instances associated with the cachelet,

other CCAs from the same coherence domain, and the local SCA.

When a function instance issues a GET or a SET request to the

global storage, the function runtime transparently intercepts the

request and forwards it to the associated CCA. For the GET re-

quests, the CCA first checks if the data is present locally. If not,

it sends a READ-HOME message to the home cachelet. Once the

home responds, the cachelet inserts the data in the local cache

and returns it to the requestor function instance. When the home

cachelet receives a READ-HOME request, it provides the cached

data or fetches it from the global storage if the data is not present

locally. The home cachelet also maintains the information needed

for cache coherence, such as the sharer list or per-data sequence

numbers. For the SET requests, the CCA always sends a WRITE-
HOME message to the home cachelet and updates the value locally

once it receives an acknowledgment. TheWRITE-HOME message

triggers the home cachelet to perform operations of the cache co-

herence and fault tolerance protocols. The home cachelet updates

the sequence number or sends update/invalidate messages to the

sharers as needed, and updates the data in the global storage if

necessary. Finally, the home responds to the requestor agent along

with the potentially updated sequence number.

3.1 Cachelet Reconfiguration Principles
UniCache uses a set of Reinforcement Learning (RL) models to

dynamically tune cachelet configuration for each application based

on system conditions.We consider each category in Table 1 at a time:

the RLmodel decisions for a given category depend on theMetrics of
Interest for that particular category. UniCache continuously collects
these metrics of interest while the application is running. Each of

the metrics affects one or more taxonomy categories, with each

category being influenced by at least two metrics. To generate

the datasets and understand the design space we have performed

extensive sensitivity studies running over 15,000 experiments with

our serverless applications. We describe the intuitions derived from

these experiments, and explain how UniCache organizes its RL

models to automatically tune configuration for each cachelet.

3.1.1 Cachelet Coherence Protocol. To compute the optimal

coherence protocol for a given cachelet, UniCache collects the data

size, number of sharers, portion of writes, and write-run (i.e., the

number of reads/writes following a single write). We vary the data

size between 1KB-512MB in powers of two, the number of sharers

between 2-64 in powers of two, the write portion between 0%-90%

in increments of 10%, and the write-run between 1-10 in increments

of one. Out of the resulting 12,000 experiments, we highlight the

four environments (Exp1-Exp4) in Figure 3.

• Exp-1. When the data is small (32KB), fetching the sequence

number from global storage is expensive. Hence, Directories

outperform SequenceNumbers by 78.9× on average.

• Exp-2. When the data is small and every write is always followed

by 2-3 reads of the same data by a different cachelet, updating the

data in other cachelets reduces the number of cache misses. Thus,

DirectoryUpdate outperforms DirectoryInvalidate by 34.3×.
• Exp-3. When data is small and every write is followed by 2-3

writes to the same cachelet before a single read of the same data

from another cachelet, invalidating the data in other cachelets

reduces network bandwidth consumption of redundant updates.

DirectoryInvalidate outperforms DirectoryUpdate by 2.3×.
• Exp-4. When the data is large (8MB), there are many sharers

(32), and the fraction of writes is moderate (10%), fetching the

sequence number is less expensive than sending the coherence

messages and waiting on the acknowledgments. Thus, Sequen-

ceNumbers outperform Directories by 4.1×.
Principle 1: If the average data size is larger than a given threshold
and the average number of sharers is larger than a given threshold

and the write fraction is within a given range, choose SequenceNum-
bers. If one of the conditions is not met and the write run is short,

choose DirectoryUpdate. Otherwise, choose DirectoryInvalidate.
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Figure 3: Normalized response time with different cachelet
organizations in different environments.

3.1.2 Cachelet Replacement. To compute optimal cachelet re-

placement policy, UniCache learns over time the number of el-

ements in the cache, data-size distribution, and data-popularity

distribution (i.e., number of concurrent requests for a given data).

We vary the number of cached elements between 10-10K in incre-

ments of 200, the data size distribution, and the data popularity

distribution, both with uniform and Zipfian distributions with 𝛼 val-

ues 0-1 in 0.2 increments. This results in 2450 different experiments,

and we highlight 4 of them in Figure 3 (Exp5-Exp8).

• Exp-5. When there are many small elements in the cache (10K

of 100B), maintaining the access bits is expensive. Thus, FIFO

outperforms LRUs by 1.3× on average.

• Exp-6. When there are few larger elements (10 of 256KB) ac-

cessed with temporal locality, the access bits are able to exploit

the locality and reduce the number of cache misses. Thus, LRUs

outperform FIFO by 1.4× on average.

• Exp-7. When there are few moderately sized elements (10 of

128KB) and one large element (1MB) repetitively accessed in
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bursts, prioritizing the large element reduces the cache miss

penalty. Thus, Priority-LRU outperforms LRU by 1.8×.
• Exp-8. When there are few frequently re-used moderately sized

elements and one large rarely used element, prioritizing the

large element negatively impacts the cache hit rate. Thus, LRU

outperforms Priority-LRU by 1.3×.
Principle 2: If the number of cached elements is larger than a given

threshold, choose FIFO. Otherwise, if the data size or popularity dis-
tribution is not uniform and the low priority data is not frequently

reused, choose Priority-LRU. Otherwise, choose LRU.

3.1.3 Coherence Domain Organization. UniCache monitors

the average sharer list length and the amount of sharing between

the cachelets located on neighboring nodes. We vary the number

of the data sharers between 2-64 in powers of 2, and the number of

clusters that the sharers belong to from 1 to the number of sharers.

This results in 126 different experiments, and we highlight two of

them in Figure 3 (Exp9, Exp10).

• Exp-9. When there are few sharers per data (5), all from dif-

ferent clusters, sending all coherence messages from the home

node is fast and does not create a network bottleneck, thus, Flat

outperforms Hierarchical by 1.6× on average.

• Exp-10. When there are many sharers per data (32), broadcast-

ing a large number of coherence messages creates a network

bottleneck in the home node. In addition, as those sharers belong

to a small number of clusters (5), one can exploit data sharing

across nodes. Thus, Hierarchical outperforms Flat by 1.3×.
Principle 3: If the average number of sharers per data and the av-

erage number of sharers per cluster are lower than some thresholds,

choose Flat. Otherwise, choose Hierarchical.

3.1.4 Write andReplication. Write and replication policiesmake

trade-offs between performance and fault tolerance. For the applica-

tions that require a high degree of fault tolerance, UniCache needs

to provide Write-Through or replicated cachelets. For the applica-

tions that do not need any fault tolerance guarantees, UniCache

always employs Write-Back schemes with no replication for opti-

mal performance. The slowdown of Write-Through depends on the

write intensity of the workload, the data size, and the load of the

system. The slowdown of replication depends on the load of the

system and on the frequency of directory or dirty data changes.

Principle 4: If the application does not have strict fault tolerance

requirements, use Write-Back with NoRepl for both dirty data and

directories. Otherwise, if the load is lower than a threshold and
the fraction of writes is below a threshold and the data size is less

than a threshold, useWrite-Through with NoRepl; else, useWrite-
Back with ReplData for the dirty data. In addition, if the coherence

protocol is Directories, use ReplDir to replicate the directory.

3.2 Reinforcement Learning for Configuration
Each taxonomy category has its own expert RL model that collects

the identified metrics of interests and periodically recomputes the

optimal value for a given category. The RL model uses (1) the pos-

sible values of a given category and the current statistics of the

collected metrics as its states, (2) the transition to a new category

value as its action, and (3) the improvement (or degradation) of the

cache response time as a reward. The models rely on Q-learning.

The expected cumulative reward by taking an action A in a given

state S is defined as the Q-value of the state-action pair using the

SARSA [20] algorithm. These models operate independently of each

other and do not take into account decisions made by the other

models. This can result in a suboptimal total performance. For ex-

ample, a specific combination of replacement policy and coherence

protocol may not yield the expected results. Hence, in UniCache,

the models are organized into a hierarchy. Individual experts send

their outputs (a few ranked suggestions) to the moderator model.

The moderator combines the outputs and makes the final decision

on the optimal cachelet configuration. The moderator is a simple

model that assigns weights to the individual downstream models

and selects one of the suggested values for each of the models that

does not negate the chosen parameter of another higher ranked

model. Thus, it takes into account the potential interactions be-

tween different categories and the overheads of transforming the

cachelet from one configuration to another.

4 EVALUATION
Methodology. We evaluate UniCache on top of OpenWhisk in

a 15-node cluster. Each node is an Intel Xeon Silver server with

20 cores, 192GB DRAM and 128MB LLC. Every node runs Ubuntu

20.04. We use Azure Blob Storage [15] as the storage service for

all the evaluated functions. To serve as baseline, we emulate the

state-of-the-art Faa$T [19] on top of OpenWhisk. Every cachelet

has the same configuration: Per-Instance, Write-Through, LRU,

Sequence-Numbers and Single-Home. We evaluate UniCache under

low, medium, and high load levels, corresponding to an average of

450 requests per second (RPS), 1000 RPS, and 1800 RPS, respectively.

Response Time and Speedups.Wemeasure the end-to-end appli-

cation response time, from the moment the client sends a request

to the point it receives the result. Using this response time, we com-

pute the speedup of UniCache over the baseline. Figure 4 shows

the average and tail speedup of each application for different loads.

Average Speedups. UniCache effectively reduces the response times

and, as a result, delivers speedups across all applications and load

levels, as shown in Figure 4 (up). The speedups range from 1.3×
(MLTrain, low load) to 9.8× (HotelR, high load), with the average of

5.7×. The speedup is particularly high for the applications whose

optimal configuration diverges significantly from the baseline’s

configuration. For example, TrainTicket applications operate on

small data, thus, maintaining the coherence via sequence numbers

is expensive. In addition, the data is shared across all instances that

belong to the same application, thus, having Per-Instance cachelets

reduces the sharing opportunity. In high loads, UniCache speeds

up these applications by 9.4× on average.

Tail Latency Speedups. UniCache significantly reduces the tail

latency of the application requests. Figure 4 (down) shows the P99

tail latency speedups in UniCache for different loads normalized to

that in the baseline. On average across all benchmarks and loads,

UniCache reduces the P99 latency by 4.3×. As the load increases,

the reduction also increases. The main sources of tail latency in

the baseline are global storage accesses: for the data or sequence

numbers. UniCache improves the cache hit rate and minimizes the

coherence cost, thus, effectively reduces the tail latency overheads.

Optimal Configurations Table 2 shows the configurations that
UniCache sets for each of the applications. For all applications we
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Figure 4: Average (up) and tail (down) speedup of UniCache over the baseline across various loads and applications.

assume strong fault tolerance requirements for the cached data,

thus, the system uses Write-Through cachelets (data is never lost).

For the other five taxonomy categories, each application requires

different cachelet organization to achieve the best performance.

UniCache manages that automatically, without users involvement,

and dynamically, without offline profiling.

Table 2: Per-benchmark configuration set by UniCache.

Workloads Configuration
ML-serv Per-Func, LRU, DirInv, Flat

ML-tr Per-Func, LRU, SequenceNumbers

VidConv Per-Func, LRU, SequenceNumbers

TrainTicket Per-App, FIFO, DirUpd, Hierarchical

ImgProc Per-Func, Prio-LRU, DirInv, Flat

DataAn Per-App, Prio-LRU, DirUpd, Flat

HotelR Per-App, FIFO, DirUpd, Hierarchical

eShop Per-Func, FIFO, DirUpd, Hierarchical

MapRed Per-App, LRU, DirUpd, Flat

System Throughput. The reduced network bandwidth, increased

cache hit rate and reduced overall data access latency result in

improved system throughput. We show the maximum throughput

in Table 3 for each of the tested applications. UniCache increases

the throughput by 1.4-5.4×, with the average of 4.6×. In addition, we
measure the throughput of a system that does not have any caching

mechanism. Faa$T significantly increases the throughput of such a

system, with the average of 9.3×, by reducing the data access latency
and the pressure on the remote storage and network bandwidth.

UniCache further improves the throughput by properly adjusting

the cache organization to the application needs and system state.

Table 3: System throughput in UniCache and in the baseline.

Workloads Baseline UniCache Improvement
(Req/s) (Req/s) (Times)

FunctionBench 1916.7 6133.3 3.2

TrainTicket 3550.0 18050.0 5.1

ServerlessBench 2900.0 13875.0 4.8

vSwarm 2600.0 11916.7 4.6

Average 2795.8 12841.7 4.6

5 CONCLUSION
We propose the first comprehensive taxonomy of distributed data

caching schemes in serverless environments. Using the taxonomy,

we introduce UniCache, a novel distributed caching scheme that au-

tomatically selects the best cache organization for each application

without any user intervention. Compared to a state-of-the-art base-

line, UniCache speeds up the average execution by 5.7×, reduces
P99 tail latency by 4.3×, and improves throughput by 4.6×.
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